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Abstract 

This study derives the discretized adjoint states full waveform inversion (FWI) in both 

time and frequency domains based on the Lagrange multiplier method. To achieve this, we 

applied adjoint state inversion on the discretized wave equation in both time domain and 

frequency domain. Besides, in this article, we introduce reliability tests to show that the 

inversion is performing as it should be expected. Reliability tests comprise of objective 

function descent test and Jacobian test. The influence of data imperfections is also being 

studied. We define data imperfection as any factor that causes deterioration in FWI results. 

Some of these factors are coherent and incoherent noises in data, source wavelet 

inaccuracy in phase and amplitude, and the existence of gaps in the seismic survey. We 

compare time and frequency domain inversion methods sensitivity to data imperfection. In 

all cases, we found that time domain full waveform inversion is more sensitive to 

imperfections in the data. In general, we find that time domain FWI result shows more 

deterioration than frequency domain FWI. All tests have been done using 2D full 

waveform inversion codes. We employ the multi-scale inversion and finite difference 

scheme (FDM) for discretization, and the misfit function is minimized via limited-memory 

Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method. 
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1   Introduction 

Full waveform is a powerful method to 

obtain seismic velocity model using the 

whole wavefield. Foundation of FWI 

theory is a study published by Tarantola 

(1984), who demonstrated minimization 

of the misfit between recorded and 

modelled data might be computed 

without calculating the partial derivatives 

explicitly. In other words, Tarantola 

(1984) proposed applying an adjoint state 

method in the seismic inversion context. 

The adjoint state method is an idea in 

system control theory that, for the first 

time, was implemented in geophysical 

inverse theory by Chavent (1974). 

    FWI was originally developed in time 

domain (Tarantola, 1984; Tarantola, 

1986; Mora, 1987; Tarantola, 1988), then 

Pratt and Worthington (1990) and Pratt 

(1990) introduced frequency domain FWI 

(FDFWI) approach and successfully 

applied to 2D cross-hole data. 

    To mitigate the nonlinearity of FWI 

and minimize the cycle-skipping effect 

(ref. Yao et al., 2019), various multiscale 

strategies have been proposed (e.g., 

Bunks et al., 1995; Sirgue and Pratt, 

2004; and Boonyasiriwat et al., 2009). In 

time domain, multi-scale FWI method 

inverts for lowest-frequency sub-bands of 

seismic data, then fed the inverted model 

as initial model to higher frequency sub-

band. Final result achieved when the 

result of highest sub-band is calculated. 

This helps to increase the chances of 

convergence to the global minimum 

(Bunks et al., 1995). Furthermore, by 

applying Fourier transform on the 

dataset, the frequency content of the 

waveform is discretized and the multi-

scale method can be easily employed in 

FDFWI. The inversion process is done 

incrementally adding from low to high-

frequency components (Sirgue and Pratt, 

2004). 

    Application of FWI in each domain 

has some pros and cons. In two 

dimensions, solving the sparse matrix 

arising from FDFWI is not so expensive. 

Besides, various sparse solver approach 

has the ability to invert multiple shots 

simultaneously (Brenders and Pratt, 

2007). However, in three dimensions, the 

matrix inversion is time- and memory-

consuming. On the other hand, time 

domain FWI (TDFWI) has the advantage 

of applying time windowing on data for 

choosing selected arrivals in data as a 

function of time (Sheng et al., 2006). In 

addition, TDFWI is more suitable for 

implementation on parallel processing 

computers such as GPGPUs (general-

purpose graphics processing unit) (Mao 

et al., 2012, Yang et al., 2015, Jiang and 

Zhu, 2018). 

    Although adjoint state method for 

inversion is well established in the 

geophysical community (Oldenburg, 

1990, Plessix, 2006), there have been few 

studies (e.g., Fichtner 2010) to look at 

full waveform inversion in discrete level, 

contributing the discretization scheme in 

the adjoint state formulation. In this 

study, we are attempting to derive the 

discretized adjoint state gradient function 

for both TDFWI and FDFWI using 2𝐾𝑡ℎ 

order finite difference scheme (FDM) for 

discretization. There are some fine details 

in the calculation of gradient in the 

discretized adjoint state method, which is 

not visible if we are only using classical 

adjoint states. 

    In this study, we also touch briefly at 

the important topic of reliability tests for 

FWI. Any nonlinear inversion scheme 

should have reliability tests, ensuring that 

the inversion is performing correctly. 

This can be done by performing some 

basic but crucial tests on the value of the 

calculated gradient and the objective 

function. 

    The last topic covered in this study is a 

comparison between TDFWI and 

FDFWI. Although there might be quite a 

few references on either TDFWI or 

FDFWI (Virieux and Operto, 2009), there 

has not been many studies on comparing 
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results from these two methods when 

there is the imperfection in the data such 

as random coherent and incoherent noises 

with different signal to noise ratios, 

source wavelet inaccuracy in phase and 

amplitude and existence of gap in the 

data. The aim of this study is to test and 

compare the data sensitivity of FWI in 

time and frequency domain. For this 

propose we impose the data 

imperfections such as coherent noise, 

source wavelet errors, gaps in the survey 

on synthetic data and present their impact 

on both TDFWI and FDFWI results. We 

decide not to add cycle skipping in the 

comparison study since there have been 

many studies of cycle skipping for both 

of these methods. Another reason which 

we do not add cycle-skipping study is 

that for a fair comparison, we need fairly 

good inversion results for noise-free 

inversions. This is obtained when we 

have the lowest frequencies in the data. 

In both FDFWI and TDFWI, we use 

multi-scale FWI method and the misfit 

function was minimized via limited-

memory Broyden-Fletcher-Goldfarb-

Shanno (LBFGS) method. In FDFWI we 

use perfectly matched layer (PML) for 

absorbing boundary condition 

(Komatitsch and Tromp, 2003), although 

sponge is applied for TDFWI (Clayton 

and Engquist, 1977).  

 
2  Adjoint state method 

Inverse problems aim to find model 

parameters, which can minimize the 

difference between observed and 

simulated data. The majority of nonlinear 

inverse problems utilizes iterative 

methods to find the solution, such that in 

each iteration solution is updated for 

reducing the objective function (misfit 

function), and the process continues until 

the misfit reaches to a satisfying value. 

 

 

𝑚𝑖+1 = 𝑚𝑖 + 𝛾𝑖  𝐻𝑖  ,  
 𝐽(𝑚𝑖+1 ) < 𝐽(𝑚𝑖 ),        

(1) 

where 𝑚 is the model parameter, 𝐽 is the 

objective function, 𝐻𝑖 and 𝛾𝑖 are descent 

direction and the step length 

respectively. Gradient methods 

approximate 𝑚 by calculating the 

derivatives of the objective function with 

respect to the model parameters, which 

might be computationally expensive in 

seismic problems. 

    The adjoint method is an efficient 

technique to evaluate the derivative of a 

functional [𝑝(𝑚)] , with respect to m. 

This is a constraint inversion with 

constraints, 

 

𝐿(𝑚)𝑝 = 𝑆,       (2) 

 

where 𝐿(𝑚) is a linear operator that 

depends on 𝑚 , 𝑝 as wavefield and 𝑆 is 

the source. The first derivation of 

𝐽[𝑝(𝑚)] with respect to m can be defined 

as: 

 
𝜕𝐽

𝜕𝑚
=  

𝜕𝐽

𝜕𝑝
 

𝜕𝑝

𝜕𝑚
 , 

(3) 

The main difficulty of calculating 
𝜕𝐽

𝜕𝑚
 is 

the computation of the 
𝜕𝑃

𝜕𝑚
 that is often 

numerically expensive; however, the 

adjoint method proposes a way of 

eliminating Frechet derivatives that 

contains first derivatives by using state 

equations, 𝐿(𝑚)𝑝 = 𝐹 that can be 

rewritten as: 

 

𝐹(𝑝, 𝑚) = 𝐿(𝑚)𝑝 − 𝑞 = 0,        (4) 

 

The adjoint state method can be derived 

in several different ways including, Born 

approximation (e.g. Tarantola, 1988; 

Fichtner, 2010), data assimilation (e.g., 

Chen, 2011) and Lagrange multipliers 

(e.g., Liu and Tromp, 2006). Lagrange 

multipliers is a method to find the 

maxima or minima of a function subject 

to equality constraints (i.e., 

minimize 𝐽(𝑚, 𝑝), subject to 𝐹(𝑝, 𝑚) =
0). The method proposes that instead of 

considering 𝐽[𝑝(𝑚)] as an objective 
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function, which should be minimized on 

m, we now consider new function 

𝐻(𝑚, 𝑝(𝑚), 𝜃) as a function of  𝑝, 

associated with constraint 𝐿(𝑚)𝑝 = 0 

and Lagrange multiplier 𝜃,  
 

𝐻(𝑚, 𝑝(𝑚), 𝜃) = 𝐽(𝑝) −
𝜃(𝐿(𝑚)𝑝 − 𝐹), 

(5) 

 

𝐻(𝑚, 𝑝, 𝜃) is a new function with higher 

dimensionally independent variables. 

Derivatives of 𝐻 are as follows: 

 
𝜕𝐻

𝜕𝑝
=  

𝜕𝐽

𝜕𝑝
− 𝐿∗(𝑚)𝜃, (6) 

𝜕𝐻

𝜕𝑚
=  

𝜕𝐽(𝑝)

𝜕𝑚
− 𝜃

𝜕𝐿

𝜕𝑚
𝑝, (7) 

 

Setting 
𝜕𝐻

𝜕𝑝
= 0, in Equation (6), the 

adjoint equation is derived. 

𝐿∗(𝑚)𝜃 =  
𝜕𝐽

𝜕𝑝
 (8) 

Also 
𝜕𝐻

𝜕𝑝
= 0, in Equation (7) gives the 

gradient equation: 

 
𝜕𝐽(𝑝)

𝜕𝑚
=  𝜃

𝜕𝐿

𝜕𝑚
𝑝, 

(9) 

 

 

Therefore, if we determine 𝑝 using state 

Equation (4) and θ using adjoint Equation 

(8), it is possible to compute the gradient 

of the objective function using Equation 

(9), (refer to Plessix, 2006).  

 
2-1  Discretized adjoint state TDFWI 

The adjoint state is a mathematically 

elegant form of calculating the gradient. 

However, when we use a discretization 

scheme for the solution of the wave 

equation, it should also be incorporated in 

the adjoint state derivation of the 

gradient. Here we follow the process 

described in the last section for 

calculating the gradient in a discrete 

sense. 

    Mathematically acoustic homogeneous 

wave propagation is defined by: 

𝜕2𝑝(𝑡)

𝜕2𝑡
=  𝑐2 ∇2𝑝(𝑡) + 𝑞(𝑡) (10) 

where p, c and q are pressure field, 

velocity and source, respectively. The 

finite difference implementation of the 

wave equation reads: 

 

𝑝𝑥,𝑦
𝑛+1 = 2𝑝𝑥,𝑦

𝑛 − 𝑝𝑥,𝑦
𝑛−1 +

 ∆𝑡2 𝑐𝑥,𝑦 
2 ∇2𝑝𝑥,𝑦 

𝑛 +  𝑞𝑥𝑠,,𝑦𝑠   
𝑛 ,  

(11) 

 where n is the current time step, 𝑥𝑠, 

𝑦𝑠 are the source x, y location. 𝐴(2𝑘)𝑡ℎ 

order FDM discretization of ∇2 is defined 

as: 

∇2𝑝𝑥,𝑦 
𝑛 =  𝑎0 𝑝𝑥,𝑦 

𝑛 +

 ∑  𝑎𝑖
𝑥𝑝𝑥−𝑖,   𝑦 

𝑛𝑘
𝑖=−𝑘 +

 ∑  𝑎𝑖
𝑦

 𝑝𝑥,   𝑦−𝑖  ,
𝑛𝑘

𝑖=−𝑘   

(12) 

where 𝑎𝑖
𝑥 and 𝑎𝑖

𝑦
as FDM stencil 

coefficients. The forward seismic-wave 

Equation (10) can be rewritten as an 

equality constraint: 

 

𝐹(𝑝𝑥,𝑦 
𝑛 , 𝑐𝑥,𝑦) =  𝑝𝑥,𝑦

𝑛+1 − 2𝑝𝑥,𝑦
𝑛 +

𝑝𝑥,𝑦
𝑛−1 − ∆𝑡2 𝑐𝑥,𝑦 

2 ∇2𝑝𝑥,𝑦 
𝑛 +

  𝑞𝑥𝑠 ,, 𝑦𝑠   
𝑛 = 0  

(13) 

The full waveform inversion objective 

function can be written as: 

 

𝐽(𝑐𝑥,𝑦 ) = ∑ (𝑑𝑥𝑟,𝑦𝑟 
𝑛 −𝑎𝑙𝑙 𝑛

𝑥𝑟, 𝑦𝑟

𝑝𝑥𝑟, 𝑦𝑟 
𝑛  )2, 

(14) 

where, 𝑑𝑥𝑟,𝑦𝑟 
𝑛 is data recorded at 𝑥𝑟, 𝑦𝑟 

location and time sample n. To minimize 

the objective function   over 𝑐𝑥,𝑦, we use 

the Lagrangian multiplier method, with 

the objective function subjected to the 

equality constraint (Equation (13)),  

𝐻(𝜃𝑥,𝑦 ,
𝑛  𝑝𝑥,𝑦 

𝑛 , 𝑐𝑥,𝑦) = 𝐽(𝑐𝑥,𝑦) +

  ∑ 𝜃𝑥,𝑦   
𝑛 𝐹(𝑝𝑥,𝑦 

𝑛 , 𝑐𝑥,𝑦)𝑎𝑙𝑙 𝑛
𝑥,𝑦 ,  

 

(15) 

where 𝜃𝑥,𝑦
𝑛  is the Lagrange multiplier 

associated with 𝐹(𝑝𝑥,𝑦
𝑛 , 𝑐𝑥,𝑦

𝑛 ). 

As it is mentioned before, state equation 

is a forward equation that calculates 𝑝𝑥,𝑦
𝑛 , 

and the adjoint equation is derived by 

setting: 

𝜕𝐻(𝜃𝑥,𝑦 ,
𝑛  𝑝𝑥,𝑦 

𝑛 , 𝑐𝑥,𝑦 )

𝜕𝑝𝑥,𝑦 
𝑛 = 0 

 

(16) 

𝜃𝑥,𝑦 
𝑛−1 − 2𝜃𝑥,𝑦  

𝑛 + 𝜃𝑥,𝑦 
𝑛+1 −  
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∆𝑡2 𝑐𝑥,𝑦 
2 ∇2𝜃𝑥,𝑦  

𝑛 −

2 ∑ (𝑑𝑥𝑟,, 𝑦𝑟 
𝑛 − 𝑝𝑥𝑟,, 𝑦𝑟 

𝑛 )𝑎𝑙𝑙 𝑛
𝑥𝑟,, 𝑦𝑟

= 0  

(17) 

This is the residual back propagation with 

values stored in 𝜃𝑥,𝑦
𝑛 . Setting 

𝜕𝐻(𝜃,𝑝,𝑐)

𝜕𝑐
= 0 

will result in gradient equation, 
𝜕𝐻(𝜃𝑥,𝑦 ,

𝑛  𝑝𝑥,𝑦 
𝑛 , 𝑐𝑥,𝑦)

𝜕𝑐𝑥,𝑦
= 0 , (18) 

𝜕𝐽(𝑐𝑥,𝑦)

𝜕𝑐𝑥,𝑦
+

𝜕

𝜕𝑐𝑥,𝑦
∑ 𝜃𝑥,𝑦   

𝑛 𝐹(𝑝𝑥,𝑦 
𝑛 , 𝑐𝑥,𝑦)𝑎𝑙𝑙 𝑛

𝑥𝑟,, 𝑦𝑟
=

0,   

 

(19) 

𝜕𝐽(𝑐𝑥,𝑦 )

𝜕𝑐𝑥,𝑦
=

−
𝜕

𝜕𝑐𝑥,𝑦
∑ 𝜃𝑥,𝑦   

𝑛 𝐹(𝑝𝑥,𝑦 
𝑛 , 𝑐𝑥,𝑦) =𝑎𝑙𝑙 𝑛

𝑥𝑟,, 𝑦𝑟

2 ∆𝑡2 ∑ 𝑐𝑥,𝑦 𝑎𝑙𝑙 𝑛
𝑥,𝑦 𝜃𝑥,𝑦  

𝑛 ∇2𝑝𝑥,𝑦 .  
𝑛   

 

(20) 

Discretized adjoint state, obtained in 

Equation (20) shows that for calculation 

of gradient, we need to cross-correlate the 

residual back propagated wavefield with 

’laplacian’ of the forward wavefield. 

Additional term of 𝑐𝑥,𝑦 in above equation 

also needs to be multiplied by cross-

correlation. 

 

2-2   Discretized adjoint state FDFWI 

The acoustic wave equation mapped to 

frequency domain can be expressed by: 

𝜔2

𝑐2
 𝑝(𝜔) + ∇2𝑝(𝜔) =  −𝑞(𝜔),  (21) 

where 𝑝(𝜔) is pressure field, 𝑞(𝜔) is the 

source signature in frequency domain and 

𝜔 is angular frequency. 

For a single frequency 𝜔𝑛 = 𝑛∆𝜔 the 

discretized state equation using FDM can 

be expressed by: 

𝜔𝑛 
2 𝑝𝑥,𝑦 

𝑛 +  𝑐𝑥,𝑦 
2 ∇2𝑝𝑥,𝑦 

𝑛 +  𝑞𝑥𝑠,,𝑥𝑠  
𝑛

= 0, 

(22) 

where 𝑝𝑥,𝑦
𝑛  is the wavefield at location 

𝑥∆𝑥, 𝑦∆𝑦 and at an angular frequency of 

𝜔𝑛. 

The equality constraint for state equation 

can be expressed by: 

 

𝐹(𝑝𝑥,𝑦 
𝑛 , 𝑐𝑥,𝑦) =  𝜔𝑛 

2 𝑝𝑥,𝑦 
𝑛 + 

 𝑐𝑥,𝑦 
2 (𝐴) + 𝑞𝑥𝑠,,   𝑥𝑠  

𝑛 = 0. 

A=𝑎0𝑝𝑥,𝑦 
𝑛 +

 

(23) 

 ∑  𝑎𝑖
𝑥𝑝𝑥−𝑖,   𝑦 

𝑛𝑘
𝑖=−𝑘 +

 ∑  𝑎𝑖
𝑦

 𝑝𝑥,   𝑦−𝑖 
𝑛𝑘

𝑖=−𝑘  

 

  

The full waveform inversion objective 

function in frequency domain reads: 

 

min𝑐 𝐽(𝑐𝑥,𝑦) =  

∑ (𝑑𝑥𝑟, 𝑦𝑟 
𝑛 − 𝑝𝑥𝑟, 𝑦𝑟 

𝑛 )2

𝑛

𝑥𝑟,, 𝑦𝑟

, 

 

(24) 

 

 

Similar to the last section, the higher 

dimensionality objective function H 

using Equations (23) and (24) using 

Lagrange multipliers 𝜃𝑥,𝑦
𝑛 can be 

expressed as: 

 

𝐻(𝜃𝑥,𝑦 ,
𝑛  𝑝𝑥,𝑦 

𝑛 , 𝑐𝑥,𝑦) = 𝐽(𝑐𝑥,𝑦) + 

∑ 𝜃𝑥,𝑦   
𝑛 𝐹(𝑝𝑥,𝑦 

𝑛 , 𝑐𝑥,𝑦),

𝑎𝑙𝑙 𝑛

𝑥,𝑦

 

 

(25) 

At minimum derivative of the 

𝐻(𝜃𝑥,𝑦 ,
𝑛  𝑝𝑥,𝑦 

𝑛 , 𝑐𝑥,𝑦) with respect to 

 𝑝𝑥,𝑦 
𝑛 and 𝑐𝑥,𝑦 should be zero. Adjoint 

equation is derived by setting 
𝜕𝐻(𝜃,𝑝,𝑐)

𝜕𝑝
=

0, 
𝜕𝐻

𝜕𝑝𝑥,𝑦 
𝑛 =  − ∑ 2(𝑑𝑥𝑟,, 𝑦𝑟 

𝑛 −𝑛
𝑥𝑟,, 𝑦𝑟

𝑝𝑥𝑟,, 𝑦𝑟 
𝑛 )∗ + 𝜔𝑛 

2 𝜃𝑥𝑟,, 𝑦𝑟  
𝑛 +

𝑐𝑥,𝑦 
2 ∇2𝜃𝑥𝑟,, 𝑦𝑟  

𝑛 = 0,  

 

 

(26) 

𝜔𝑛 
2 𝜃𝑥𝑟,, 𝑦𝑟  

𝑛 + 𝑐𝑥,𝑦 
2 ∇2𝜃𝑥𝑟,, 𝑦𝑟  

𝑛 =

 ∑ 2(𝑑𝑥𝑟,, 𝑦𝑟 
𝑛 − 𝑝𝑥𝑟,, 𝑦𝑟 

𝑛 )∗𝑛
𝑥𝑟,, 𝑦𝑟

.  
 

(27) 

Setting 
𝜕𝐻(𝜃,𝑝,𝑐)

𝜕𝑝
= 0 results in gradient 

equation, 
𝜕𝐻

𝜕𝑐𝑥,𝑦
=  

𝜕𝐽

𝜕𝑐𝑥,𝑦
+

𝜕

𝜕𝑐𝑥,𝑦
 

( ∑ 𝜃𝑥,𝑦   
𝑛 𝐹(𝑝𝑥,𝑦 

𝑛 , 𝑐𝑥,𝑦)) = 0,

𝑎𝑙𝑙 𝑛

𝑥,𝑦

 

 

(28) 

𝜕𝐽

𝜕𝑐𝑥,𝑦
= −2 ∑ 𝜃𝑥,𝑦   

𝑛 𝑐𝑥,𝑦 

𝑎𝑙𝑙 𝑛

𝑥,𝑦

∇2𝑝𝑥,𝑦 .  
𝑛  

 

(29) 
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2-3   Inversion Method 

We applied multiscale FWI with the 

misfit function minimized via limited-

memory Broyden-Fletcher- 

Goldfarb-Shanno (LBFGS) method. The 

velocity model update in each iteration 

derived as: 

 

𝑐𝑥,𝑦
𝑘+1 = 𝑐𝑥,𝑦

𝑘 − 𝜏 𝐻𝑘 ∇𝐽(𝑐𝑥,𝑦
𝑘 ), (30) 

 

where 𝐻𝑘 is the inverse of the Pseudo-

Hessian obtained with LBFGS. The value 

of line search (𝜏) is obtained from 

Equation (31). 

𝑚𝑖𝑛𝜏 
1

2
‖𝒅 − 𝑅𝒑(𝑐 + 𝜏 𝜹𝒄)‖2 =

1

2
‖𝒅 − 𝑅𝒑(𝑐) − 𝜏 𝑅𝜹𝒑‖2  ,   

(31) 

where R is detection operator which is 

zero everywhere except at the receivers 

location and 𝛿𝑝 = 𝑝(𝑐 + 𝛿𝑐) − 𝑝(𝑐) for 

small perturbation of 𝛿𝑐 along the 

descent direction. 

    Recalling, 𝑎 = 𝑑 − 𝑅𝑝(𝑐) and 𝑏 =
𝑅𝛿𝑝. 

𝜏 =  
𝑎𝑇𝑏

𝑏𝑇𝑏
 . 

 

 

2-4    Absorbing Boundary 

One serious issue in seismic forward 

modelling is reflections or wrap around 

waves from the artificial boundaries of 

the numerical grid. To overcome this 

effect, different efforts have been 

undertaken, these methods can be 

classified in two major groups: absorbing 

boundary conditions (e.g. Engquist and 

Majda, 1977, Clayton and Engquist, 

1977, Reynolds, 1978, Keys, 1985, 

Higdon, 1991) and absorbing boundary 

layers (e.g. Cerjan et al., 1985; Berenger, 

1994; Komatitsch and Tromp, 2003; 

McGarry and Moghaddam; 2009, Pasalic 

and McGarry, 2010). We use the method 

of perfectly matched layers (PML) of 

Bereger (1994) for frequency domain 

modelling and Clayton and Engquist 

(1977) paraxial conditions for time 

domain modelling. Although, in theory, 

the discretized adjoint state of the 

absorbing layers needs to be calculated 

for estimation of the gradient to be highly 

accurate; however, this calculation is 

quite complicated and we presume the 

absorbing layers are self-adjoint. 

 

3   Reliability Test 

In order to investigate that time and 

frequency domains FWI are accurately 

performed, we need to do some reliability 

tests. To insure that the inversion is 

performing correctly, we should make 

some reliability tests on nonlinear 

inversion scheme. This can be done by 

performing some basic but crucial tests 

on the value of the calculated gradient 

and the objective function.  

 

3-1   Objective function reduction 

As it was previously mentioned, in both 

time and frequency domains, we applied 

multi-scale FWI on N frequency sub-

bands, each sub-band M iteration, 

objective function decreasing is one of 

the reliability tests to evaluate inversion. 

In each sub-band, the value of objective 

function per iteration needs to be 

decreased. A common misconception is 

that the value of objective function needs 

to strictly decrease per iteration and when 

the inversion moves to a new sub-brand, 

the inversion should start with a smaller 

value of the objective function. However 

this is not true, the value of objective 

function at iteration 1 in each sub-band is 

totally unrelated to the value of the 

objective function at previous sub-bands. 

This is because of the objective function 

for each sub-band is formed only with the 

data information in that specific sub-

band. However, objective function must 

be decreased per iteration in this sub-

band. In the example section, we show 

some of the objective function behaviors. 

 
3-2   Jacobian test 

The other reliability test that is very 

important is the Jacobian test. The test is 

performed on Jacobian of the objective 
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function of FWI to measure its accuracy. 

If Jacobian of the objective function is 

properly implemented, then the following 

equation at iteration k of the inversion 

should be held. 

𝐽(𝑐𝑘+1) − 𝐽(𝑐𝑘) =  
1

2
(∇𝐽(𝑐𝑘+1) +

∇𝐽(𝑐𝑘))
𝑇

 (𝑐𝑘+1 − 𝑐𝑘 )  
(32) 

In each iteration, we define two functions 

𝑔𝑎
𝑘 and 𝑔𝑏

𝑘 as follows: 

𝑔𝑎 
𝑘 =  𝐽(𝑐𝑘+1) −  𝐽(𝑐𝑘), (33) 

𝑔𝑏 
𝑘 =  

1

2
(∇𝐽(𝑐𝑘+1) +

∇𝐽(𝑐𝑘))
𝑇

 (𝑐𝑘+1 − 𝑐𝑘 ),  
 

(34) 

where, J refers to Jacobian and 𝑐𝑘+1 

and 𝑐𝑘 are velocity models that are 

obtained from two consecutive iterations, 

k + 1 and k, respectively. The two 

functions 𝑔𝑎
𝑘 and 𝑔𝑏

𝑘 should follow each 

other closely per iterations. If the two 

functions significantly deviate from each 

other, then there is a problem with 

Jacobian derivation. In example section, 

we show behavior of these functions. 

 
4   Sensitivity Analysis  

The aim of this study is to compare the 

data imperfections effect on FWI in time 

and frequency domain. If we compute the 

relative error based on the exact model 

when we insert imperfection in the data, 

it will be difficult to measure the 

deterioration of the result since TDFWI 

and FDFWI each gives different 

inversion result for the noise-free dataset. 

Instead, we measure the deterioration 

from the noise-free inverted model rather 

than the exact model. Here is the step-by-

step process: 

1. Generate synthetic noise-free data 

set from the exact model and run FWI in 

time and frequency domain on this 

dataset, then run synthetic data from the 

inverted model and call it ’reference’ 

dataset. 

2. Add imperfection to time and 

frequency domain noise free dataset, run 

inversion on imperfect data to find the 

inverted model, then run synthetic on the 

inverted model, and call it ’erroneous’ 

dataset. The error can be calculated in 

percentage as follows: 

𝐸 =
‖𝑅 − 𝑆‖1

‖𝑅‖1
 × 100 

(35) 

In Equation (35), R is reference synthetic 

dataset (either time or frequency domain) 

and S is erroneous synthetic dataset.  

 

5    Examples 

We generate inversion results by using 

2D acoustic FWI on a subset of the North 

Sea model shown in Figure 1a). The 

geometry subset is 1600 m long and 2000 

m deep with 8 m grid spacing. Initial 

velocity model was created as a 1D 137 

velocity model by averaging over every 

row of the true velocity model that is 

shown in Figure 1b). Synthetic data is 

generated with 32 shots and 189 

receivers. Shots are located at a lateral 

position between 48 m and 1550 m with a 

48 m shot spacing and lateral positions of 

receivers are between 40 m and 1550 m 

and 8 m receiver spacing. Depth of all 

shots and receivers is 8 m. The source 

time function is a Ricker wavelet with a 

15 Hz central frequency and total 

recording time and time sampling are 3 s 

and 0:001 s respectively. We conducted 

the inversion process using multi-scale 

FWI, the frequency band is from 0:33 Hz 

to 20 Hz, in 0:33 Hz intervals that 

decomposed into 5 sub-band, with 15 

iterations at each sub-band. The 0:33 Hz 

frequency increment for frequency 

domain inversion corresponds to 3 

seconds of recording time for TDFWI. 

The first to fifth sub-bands are [0-4] Hz, 

[4-8] Hz, [8-12] Hz, [12-16] Hz and [16-

20] Hz respectively.  

     The objective functions for noise-free 

dataset in each band are shown in Figure 

2 and 3 for TDFWI and FDFWI, 

respectively. 

     Figures 4 and 5 show results of the 

Jacobian test for TDFWI and FDFWI, 

respectively. 
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Figure 1: a) True velocity model, b) Initial velocity model, c) FDFWI result, d) TDFWI result.

 
Figure 2: Objective function decreasing test for noise free TDFWI. 
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Figure 3. Objective function decreasing test for noise free FDFWI. 

 

 
 

Figure 4. Jacobian test for noise free TDFWI are, (a) first sub-band, (b) second sub-band, (c) third sub-band, 

(d) fourth sub-band, (e) fifth sub-band. 
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Figure 5. Jacobian test for noise free FDFWI are, (a) first sub-band, (b) second sub-band, (c) third sub-band, 

(d) fourth sub-band, (e) fifth sub-band. 

 

 

4-1    Gap in survey 

In practical FWI, there are several 

challenges for collecting data, due to 

natural phenomena and equipment 

limitations. We assume there are gaps in 

the survey (i.e., regions without any 

sources and receivers) and investigate 

157 of their effects on inversion results. 

We impose two types of gap formations 

to create syntactic data. The first gap is a 

continuous gap at the center of the model 

and the second gap is two equally 

separated gaps with centers are located in 

one-third and two-thirds of the model. 

The length of the total gap is equal for 

both types of a gap, for example, a 100 m 

gap of the first type could be comparable 

with a 50-50 m gap of the second type. 

Figure 6 shows the receiver data for both 

types of gaps with 400 m width. Figure 7 

shows FWI result of gap errors. As it can 

be seen in this figure, for FDFWI 

increasing continuous gap has a visible 

effect on salt body and its surrounding 

while the level of deterioration is not very 

visible in discrete gap. By looking at 

these figures, we can also say continuous 

gap for both FD and TD FWI looks to 

have more deteriorating effect that 

discrete gap with the same size.  

 

4-2   Coherent noise 

We cannot deny the presence of noise in 

seismic data, wind motion or cable 

vibrations can generate random noise 

similar to incoherent noise. Some of the 

noise sources Such as pumpjack noise, 60 

Hz powerline noise, ground roll, 

reverberating refractions and multiples 

(Chopra and Marfurt, 2014) create more 
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coherent energy on the data and can be 

misinterpreted as a true signal. Therefore, 

the sensitivity of FWI to coherent and 

incoherent noise has been examined both  

in frequency and time domain. To create 

coherent noise, we first generated a 

random Gaussian noise, then apply a 

smoothing filter on it with σ, that is a 

control parameter defined as Equation 

(36). 

𝜎 =  
𝐿

10 𝑆𝐿
, 

(36) 

In Equation (36), L is the length of the 

model and SL is the smoothing distance. 

FWI results of noise errors are shown in 

Figure 8. As it can be seen in this figure, 

coherent noise when SNR is low has 

destructing effect on the results but the 

main salt body can somehow be seen in 

low SNR with FDFWI method while the 

salt body is deteriorated too much to be 

seen as a single body in TDFWI.   

 

4-3   Source wavelet error 

We also examine the effect of phase and 

amplitude errors on source wavelet for 

different FWI methods. Here we test four 

different shifted phases in degree (0, 10, 

20, and 30) and for each phase, we use 

two amplitudes (0.8, 1). Figure 9 shows 

FWI result of wavelet errors. As it can be 

seen from these figures, error in source 

wavelet phase estimation has much 

deteriorating effect on results than error 

in amplitudes. 

 

 

 

 
Figure 6. Receivers’ data for, a) 400 meter continuous gap. b) 400 meter discrete gap 
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Figure 7: FWI results in presence of gap error. The horizontal and vertical axes are respectively horizontal 

offset (km) and depth (km).  FDFWI results are, (F1) 100m continuous gap, (F2) 200m continuous gap, (F3) 

300m continuous gap, (F4) 400m continuous gap. TDFWI results are, (T1) 100m continuous gap error, (T2) 

200m continuous gap error, (T3) 300m continuous gap error, (T4) 400m continuous gap error, FDFWI results 

are, (F5) 100m discrete gap,(F6) 200m discrete gap, (F7) 300m discrete gap, (F8) 400m discrete gap. TDFWI 

results are, (T5) 100m discrete gap error, (T6) 200m discrete gap error, (T7) 300m discrete gap error, (T8) 

400m discrete gap error. 

 

 

5   Conclusions 

In this paper, we first derive discretized 

adjoint state full waveform inversion in 

both time and frequency domains. The 

adjoint state method applied to 

discretized wave equation with FDM 

scheme rather than continuous version of 

wave equation which most predecessor 
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works has been done. This has merit of 

extreme accuracy in discretized level, 

which has been confirmed by reliability 

tests for inversion schemes. 

 

 

 
 

Figure 8. FWI results in presence of different errors with coherent noise. The horizontal and vertical axes are 

respectively horizontal offset (km) and depth (km). Frequency domain results are, (F1) sigma=0 and 

SNR=5dB, (F2) sigma=1 and SNR=5dB. (F3) sigma=0.3 and SNR=5dB. (F4) sigma=0.1 and SNR=5dB, 

(F5) sigma=0 and SNR=20dB. (F6) sigma=1 and SNR=20dB, (F7) sigma=0.3 and SNR=20dB,(F8) 

sigma=0.1 and SNR=20dB. Time domain results are, (T1) sigma=0 and SNR=5dB, (T2) sigma=1 and 

SNR=5dB, (T3) sigma=0.3 and SNR=5dB, (T4) sigma=0.1 and SNR=5dB, (T5) sigma=0 and SNR=20dB, 

(T6) sigma=1 and SNR=20dB, (T7) sigma=0.3 and SNR=20dB, (T8) sigma=0.1 and SNR=20dB. 
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Figure 9. FWI results in presence of different source wavelet errors. The horizontal and vertical axes are 

respectively horizontal offset (km) and depth (km). Frequency domain results are, (F1) Phase=0 and 

AMP=1, (F2) Phase=10 and AMP=1,(F3) Phase=20 and AMP=1,(F4) Phase=30 and AMP=1,(F5) Phase=0 

and AMP=0.8,(F6)Phase=10 and AMP=0.8, (F7) Phase=20 and AMP=.8, (F8) Phase=30 and AMP=.8. Time 

domain results are, (T1) Phase=0 and AMP=1, (T2) Phase=10 and AMP=1, (T3) Phase=20 and AMP=1, (T4) 

Phase=30 and AMP=1, (T5) Phase=0 and AMP=0.8, (T6) Phase=10 and AMP=0.8, (T7) Phase=20 and 

AMP=.8, (T8) Phase=30 and AMP=.8 

 

 

   In this paper, we also introduce 

reliability tests that comprise of objective 

function descent test and Jacobian test. 

Objective function test states that 

objective function needs to decrease per 

iteration no matter which kind of 

optimization or methodology has been 

used for inversion. Jacobian test is a test 

to verify that the gradient of the objective 

function, which is a key element of the 

inversion, is properly calculated. In 

another word “gradient is gradient”. 

In this study, we also compare TDFWI 

and FDFWI by designing different tests  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 
Figure 10. Error calculated from Equation (3), (a) Coherent noise error in frequency domain, (b) Coherent 

noise error in time domain, (c) Wavelet source error in frequency domain, (d) Wavelet source error in time, 

(e) Gap error in frequency domain, (f) Gap error in time domain. 

 

 

to analyze the effect of various errors in 

data which we call it data imperfections. 

Data imperfections include random and 

coherent noises in data, errors in 

estimation of source wavelet and 

existence of gap in the seismic survey. 
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   The results of noise tests shown in 

Figure 10 prove that coherent noise has a 

great destructive impact on TDFWI and 

FDFWI, especially when SNR is low. 

The gap tests demonstrate that one big 

gap in seismic survey cause more 

deterioration in FWI results than series of 

dis-joint gaps with sum of equal size. The 

source wavelet results show that both 

TDFWI and FDFWI are sensitive to 

errors in amplitude and phase of source 

wavelet with more sensitivity on phase 

error. The result of all tests shows more 

deterioration in TDFWI than that of 

FDFWI. In other words, for every test 

which we conducted, we observed that 

FDFWI is more preferable than TDFWI 

in term of resistance to data imperfection. 
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