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Abstract 

A quadratic surface can be fitted to potential-field data within 3×3 windows, which allow 

us to calculate curvature attributes from its coefficients. Phillips (2007) derived an 

equation depending on the most negative curvature to obtain the depth and structural index 

of isolated sources from peak values of special functions. They divided the special 

functions into two categories: Model-specific special functions (including Horizontal 

Gradient Magnitude (HGM) and absolute value) and Model-independent special functions 

(including Local Wavenumber (LW) and Total Gradient (TG)). We used the normalized 

source strength (NSS) as a new model-independent special function to estimate depth and 

shape factor of gravity and magnetic sources. It has its peak directly over the potential field 

sources (even for dipping sources), and is independent of magnetization direction in 

magnetic cases. Spurious results are removed by applying a threshold on the shape index 

attribute and the shape factor. 

   In this study, the method has been applied on noisy and noise-free synthetic models. For 

depth estimation of complex sources, we first estimated the depth and structural index from 

local wavenumber special function. Then, it was used as input to TG and NSS special 

functions. Finally, this method was tested on real data from Safoo Manganese ore, 

Northwest of Iran.  
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1    Introduction 
To date, many automated techniques 

have been designed to quickly estimate 

source parameters of magnetic and 

gravity anomalies. Salem et al. (2005) 

obtained locations of the 2D magnetic 

source by solving a linear equation 

depending on local wavenumbers in the x 

and z directions. Beiki and Pedersen 

(2010) introduced a method to estimate 

source parameters by using eigenvectors 

of gravity gradient tensor data. Beiki 

(2010) showed that directional analytic 

signal satisfies the homogenous Euler 

deconvolution equation. He 

simultaneously calculated the type and 

location of sources for a window with 

varying size located around the maxima 

of their function. Abbas and Fedi (2014) 

estimated depth and structural index by 

defining a scale function from different 

orders of partial derivatives, which is 

independent of the structural index. 

Hansen and De Ridder (2006) proposed a 

linear feature analysis based on the 

curvature of the total horizontal gradient 

of the total magnetic field. 

    Oruç et al. (2013) used the smallest 

eigenvalue of the curvature matrix to 

determine the edges of anomaly sources. 

This eigenvalue is equivalent to the most 

negative curvature attribute that was 

introduced by Roberts (2001) for a 

quadratic surface. Therefore, most 

positive and negative curvature attributes 

are useful in determining the edges of 

sources with positive and negative 

density contrast, respectively. Some of 

these attributes are used to determine the 

boundaries of gravity sources by 

Barazesh et al. (2016). Phillips et al. 

(2007) introduced symmetrical special 

functions that have peaks above isolated 

sources in two categories to estimate the 

source parameters: a) model-specific 

special functions: such as Horizontal 

Gradient Magnitude (HGM) and the 

absolute value of a transformed observed 

field to locate specific sources with 

known shapes (e.g. sphere, horizontal 

line); b) model-independent special 

functions: such as Total Gradient (TG) 

and Local Wavenumber (LW) to 

determine some parameters of different 

types of anomaly sources. A quadratic 

surface should be fitted to a special 

function within 3×3 windows to calculate 

location and structural index of 

anomalous sources from the curvature 

and the special function value at peak 

location. In this paper, we added the 

normalized source strength to model-

independent special functions introduced 

by Phillips et al. (2007), which are more 

effective than the TG and LW special 

functions. In addition, the shape factor 

can be calculated from it. 

    In this paper, first, a short description 

of the principle of the curvature method 

is presented. Then, this method was 

tested on gravity and magnetic models. 

Finally, the curvature analysis is applied 

on gravity data from Safoo Manganese 

ore. 

 

2    Materials and Methods 

2-1    Curvature attributes 

Near massive bodies, the potential field is 

severely curved. Curvature is a curve 

property, which determines the amount of 

deviation from a straight line at any 

point. The standard formula to calculate 

the curvature of function F(x) in x 

direction is: 
2 2

2 3/2
.

(1 ( ) )

d F dx
K

dF dx



                            (1) 

For gridded data, we face with a surface 

having numerous curvatures at a certain 

point due to numerous intersection planes 

that can be introduced there. One expects 

the curvature has a maximum value 

perpendicular to the elongated direction, 

when the bodies are elongated in a 

direction. The most suitable curvature 

called “normal curvature” can be 

obtained from the intersection of planes 

that are perpendicular to the surface. 

Some of the most useful normal 
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curvatures are presented in Appendix A. 

A quadratic surface (Equation A1) is 

fitted to the data (or special functions) 

within 3×3 windows and then curvature 

attributes can be calculated from the 

coefficients of this surface (Equations 

A2-4). The most positive curvature 

(Equation A2) and the most negative 

curvature (Equation A3) are calculated 

along and perpendicular to the strike of 

the source, respectively. Therefore, the 

most negative curvature is suitable for 

depth estimation.  

 

2-2  Application of curvature attributes 

in depth estimation 

The main idea in determination of source 

parameters is based on curvature analysis 

of certain special functions that have 

peaks over isolated sources. For gridded 

data, special functions at ( , , )x y z , over 

isolated sources, have the following 

general form: 

 

2 2 2
( , , ) .

( )
S x y z

X Y Z 




 
               (2) 

 

where 0( )X x x  , 0( )Y y y  , 

0( )Z z z   and ( , , )0 0 0x y z are the 

source location.   is a positive constant, 

  is called geometry factor which 

depends on physical and geometrical 

properties of the source. Once the depth 

has been determined, the geometry factor 

can be estimated as follows: 

 
2

0 0( , , ).Z S x y z                              (3) 

 

Finding the peak location of ridge crests,

0 0( , )x y , is discussed in detail by Phillips 

et al. (2007) using curvature. The depth, 

Z, can be calculated in terms of the 

special function value and the most 

negative curvature at the peak location, 

0 0( , )x y , through the substitution of 

Equation (2) in (1),: 

0 0

0 0

2 ( , , )
.

( , , )neg

S x y z
Z

K x y z


                           (4) 

Phillips et al. (2007) categorized the 

special functions, which have the form of 

Equation (2) over the anomaly, into two 

groups: Model-specific special functions 

and model-independent special functions. 

The first group includes HGM (T) 

(Equation 5) and T or the absolute value (

T ).  
 

( ) ( ) .2 2T T
HGM

x y

 
 

 
 

(5) 

 

T can be observed as a potential-field 

data (vertical components of the gravity 

vector or total magnetic intensity field) or 

a transformed version thereof. HGM can 

be used to calculate the depth of specific 

sources such as a contact, horizontal and 

vertical cylinder, etc. Some of these 

sources and their   values are presented 

by Phillips et al. (2007). The second 

group contains the Total Gradient (TG) 

and Local Wavenumber (LW), which are 

used to estimate the depth of a variety of 

sources: 
22 2

( , ) ,
T T T

TG x y
x y z

      
      

      
 (6) 

(7) 
2 2 2

2

22 2
( , ) .

T T T T T T

x z x y z y z z
LW x y

T T T

x y z

     
 

       


      
     

      

 

A structural index must be assumed to 

estimate the depth (Equation 4) from TG, 

but in the case of LW (for which 1 ) 

the structural index can be estimated 

from the calculated depth (Equation 4) as 

follows: 

0 0( , ) 1.est estSI LW x y Z                         (8) 

where estSI and estZ  are the estimated 

structural index and depth, respectively. 

Phillips (2007) designed an extension as 
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Geosoft executable to implement depth 

estimation method using curvature.  

     We use the normalized source strength 

(NSS) (Equation 9) as the third model-

independent special function: 

 

2

2 1 3 .NSS                                   (9)     (9) 

 

where i (i 1,2,3)   are eigenvalues of the 

gradient tensor ( ), 

.

xx xy xz

xy yy yz

xz yz zz

T T T

T T T

T T T

 
 

  
 
 

                            (10) 

 

( , , , )T x y z    are components of the 

gravity or magnetic gradient tensor. The 

normalized source strength of simple 

sources has the form of Equation 2, 

 

1

2 2 2 2

( , , ) .

( )
SI

q
NSS x y z

X Y Z





 

     (11) 

 

where q, the shape factor, depends on the 

physical and geometrical properties of the 

model (Table 1), σ=Cm (10-7 H/m) or G 

for magnetic and gravity sources, 

respectively (Table 1). Therefore, q can 

be calculated using  

 

1

0 0( , , )SIZ NSS x y z
q






. 

    The components of the third column of 

the gradient tensor are Hilbert transform 

pairs of the first and second columns. To 

calculate the components of the gravity 

gradient tensor, we used the method 

introduced by Mickus and Hinojosa 

(2001). The components of magnetic 

gradient tensor are calculated as 

described by Schmidt and Clark (1998) in 

the Fourier domain. As total gradient 

special function (TG), it is necessary to 

assume a structural index (SI) and then

1

2

SI



  (Table 1) to estimate the 

depth (Equation 4) from NSS special 

function. This indicates that the NSS is an 

appropriate alternative to the total 

gradient for purposes of depth 

estimation.   

    The shape index attribute (SHI) 

(Equation A4) is defined as an angle in 

the (Kneg+Kpos) (Kneg+Kpos) plane and 

numerically determines the shape of 

surface S. The SHI changes from -1 

(spherical cup) and +1 (spherical cap) 

and by going from the positive sign to the 

negative sign, the surface shape changes 

from being concave (concave downward)  

 

 

 
Figure 1. Classification of the local shape of the surface in terms of shape index (SHI) values (after Xú et 

al.). 
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Table 1. Normalized source strength (NSS) special function for gravity (Grav) and magnetic (Mag) sources 

that has the form of Equation 2. 

  density contrast, J= magnetization intensity (A/m), M= excess mass of sphere (kg), V= volume of sphere, m= mass 

per unit length of the line source, C=100 nH/m t= perpendicular thickness of the sheet,
Lm is linear density of effective 

dipole moment and G= gravitational constant . 

Gravity/Magneti

c source 

NSS (Grav) NSS (Mag) ( / )grav mag

 

Sphere 
2 2 2 3/2

( )
( )

GM
NSS q M

X Y Z
 

 
 

2 2 2 2

3
( 3 )

( )

mC JV
NSS q JV

X Y Z
 

 

 

1.5/2 

Horizontal 

cylinder 2 2 2

2
( 2 )

Gm
NSS q m

X Y Z
 

 
 2 2 2 3/2

4
( 4 )

( )

m L
L

C m
NSS q m

X Y Z
 

 

 

1/1.5 

Thin sheet 
2 2 2 1/2

2
( 2 )

( )

G t
NSS q t

X Y Z


  

 

 

2 2 2

2
( 2 )mC J t

NSS q J t
X Y Z


 

 
 

0.5/1 

 

 

to convex (concave upward). A 

classification of the surface shape with 

SHI values is shown in Figure 1. Barraud  

(2013) showed that SHI is a suitable 

criterion for removing incorrect depth 

estimates of model-specific special 

functions that do not satisfy the 2D 

condition (it should be noted that in this 

paper, the concepts of the three 

parameters of the shape index attribute 

(SHI), the structural index (SI) and the 

shape factor (q) are completely different). 

The special functions (S) form the ridge-

like surface over the anomaly sources. 

Therefore, SHI is a suitable criterion for 

removing extra and spurious solutions. 

Since the model-independent special 

functions have locally shapes (e.g. over 

the edges of anomaly sources) have 

shapes like ridges (0.375  SHI  0.625), 

we can also apply this criterion to remove 

incorrect depth, structural index and 

shape factor from these special functions 

(of course, this interval can be changed 

depending on the local shape of the 

surface). 

 

3    Synthetic data example 

We applied the above-mentioned method 

to a dipping prism (300m×300m×200m) 

which carries a remanent magnetization 

with a Koenigsberger ratio (Q) equal to 

2.5 and depth to top of 20 m. The induced 

and remanent magnetization vectors, 

(inclination, declination), are (-60, 0) 

and (-20, -20), respectively. The 

geomagnetic field intensity was 28,000 

nT. Figure 2 shows a 3D view of the 

dipping prism. Figures 3a-c show the 

magnetic field and the calculated total 

gradient and normalized source strength 

of the dipping prism, respectively. 
 

 
Figure 2. A 3D view of a prism model with dip of 

60. 

   As seen from Figure 3c, the maximum 

of NSS is located on the true edges and 

shows the low sensitivity to the 

magnetization direction in comparison 

with the total gradient. To estimate the 

source parameters, first we apply the LW 

special function to calculate the depth 

(Equation 4) and structural index 

(Equation 8) from the model of Figure 2. 

We used the following criteria to remove 

the spurious solutions from LW special 

functions:  
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1. Solutions with negative depths, 

2. Solutions with unreasonable structural 

index, 

3. Solutions outside of 0.375  SHI  

0.625. 

    Figure 4a shows the depths obtained 

from the LW special function. Because of 

using second-order derivatives in LW, 

this function has created dispersed 

solutions outside the prism location.  

Depths are not well-resolved in the 

corners of the prism as the LW special 

function does not fulfill the 2D condition 

and does not exhibit a ridge-like shape in 

the corners. The structural indices shown 

in Figure 4b are very close to zero, which 

is the theoretical structural index of a 

magnetic contact model.  

    To estimate the depth of the prism 

(Equation 4) from the total gradient 

special function, the estimated SI from 

the local wavenumber function over the 

edges (SI = 0 or  = 0.5) is assumed as 

input (Figure 4c). The depth values from 

TG are very close to the results of the 

LW, except on the western edge of the 

cube and the corners. Applying SHI 

criterion plus removing negative depths, 

we have tried to remove the spurious 

solutions (TG uses two criteria, whereas 

the local wavenumber special function 

uses three criteria).  
 

 

 

 

 

 
 
 

 
 

Figure 3. a) Synthetic magnetic anomaly for the body whose outline is shown with the dashed line. The body 

had a depth to top 20 m and induced and remanent magnetization vector, (inclination, declination), are (-60, 

0) and (-20, -20), respectively. The body had 200 m depth extent, a susceptibility of 0.01 SI units with 

Koenigsberger ratio 2.5. The grid spacing was 5 m. The geomagnetic field intensity was 28,000 nT. b) Total 

gradient (TG) special function of the data from panel (a). c) Normalized source strength (NSS) special 

function of the data from panel (a).  
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    The NSS special function was obtained 

from the eigenvalues of the magnetic 

gradient tensor. We use Equation 4 to 

calculate depth by assuming he estimated 

structural index from LW special function 

(SI = 0 or  = 0.5). Figures 5a-b show the 

results of depth and shape factor, which 

are calculated from the NSS special 

function. Compared to TG and LW 

special functions, solutions of the 

normalized source strength are exactly 

over the prism boundaries, and spurious 

results disappear by applying SHI 

criteria. 

    The interference effect of the 

neighboring source is shown by 

considering a synthetic model involving 

two prisms that are located at different 

depths. Table 2 describes the physical 

and geometrical properties of the prisms. 

We have also added a random Gaussian 

noise, N (0, σ2) with standard deviation 

equal to 2% of the standard deviation of 

each magnetic tensor components to the 

corresponding component. Figures 6a and 

6b, respectively, show a 3D view of the 

synthetic model and depth solutions using 

the NSS special function after applying 

the SHI criterion. As in the previous 

model, we assumed  = 0.5 for this 

model to estimate the depth. The 

estimated depth over the edges is very 

close to the real values. Many spurious 

solutions have been removed by applying 

the SHI criterion. However, the spurious 

solutions have not been completely 

removed. 

 

 

 

 

 
 

Figure 4. Special function results after applying the SHI criterion for synthetic model of Figure 2. a) Depth 

estimation from LW. b) Estimated structural index (SI) approximately equal to zero. c) Depth estimation 

from TG assuming 0SI  . Background map is corresponding special functions. 
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Table 2. Physical properties of prisms shown in Figure 6a. 

Body Depth to 

top (km) 

Depth 

extent (km) 

Width (km) Magnetization 

(Inc, Dec) 

Susceptibility 

(SI) 

Q ratio 

Prism 1 0.5 15 20 (-60, 0) 0.015 1.5 

Prism 2 1 20 20 (-60, 0) 0.01 1 

 

 

 

  

Figure 5. Results using the NSS special function after applying the SHI criterion for the synthetic model of 

Figure 2. a) Depth and b) shape factor. Background map shows the NSS special function of the dipping 

prism. 

 

 

 
Figure 6. a) A 3D view of two prisms model. b) Depth using the NSS special function after applying the SHI 

criterion. Background map shows the NSS special function of the prisms. 

 

     As the last example, we considered a 

finite horizontal cylinder in the gravity 

field. The sensitivity of the method to the  

random noise was tested by estimating 

the source location and structural index in 

the presence of Gaussian noise with zero 

mean and standard deviation of 

0.5 Gal   (Figure 7a). 

     We used an upward-continuation filter 

of 100 m before applying the method to 

reduce the effect of noise (Figures 7b and 

7c). This was chosen equal to 150 m for 
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the LW special function (Figures 7d and 

7e). 

     The gravity effect of the finite 

horizontal cylinder along the y-axis (from 

y1 to y2) can be derived as follows, 

(12) 

1 2

2 1 2
0 2 2

0 0

( ) .
( ) ( )

z

y y y y

r r
g R G z z

x x z z

 


   
  

                                                                                                         

where R is the radius (m), G is 

gravitational constant,   is the density 

contrast, and 
2 2 2

0 0( ) ( ) ( ) , 1,2.i ir x x y y z z i      

  

    In this case, we choose the gravity 

effect as a model-specific special 

function, assuming the infinite horizontal 

cylinder model (SI=1 or 1  (Table 2 in 
 

 

 

 

 

 

 

 

       

Figure 7. a) Gravity anomaly of the elongated cylindrical model (14 km) in the presence of Gaussian noise 

with zero mean and standard deviation of 0.5 Gal  . b) model-specific special function results assuming an 

infinite cylinder with SI=1. c) TG results assuming SI=1. d) LW results. e) Structural index (SI) calculated 

from LW. Background map shows gravity effect of the finite cylinder after upward continuation of 100 m. 
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Figure 8. The NSS special function results after applying the SHI criterion for the synthetic model of Fig. 7a. 

a) Depth and b) shape factor. Background map shows NSS special function of the horizontal cylinder. Data 

were upward continued by 100 m before calculations. 

 

  

Figure 9. a) Bouguer gravity and b) residual anomaly map over the Safoo manganese ore superimposed on 

the location of stations (+symbols).  

 
Phillips et al. (2007)) to calculate the 

depth from Equation 4 (Figure 7b). The 

resulting depths are in good agreement 

with the central depth of the horizontal 

cylinder. The estimated depths from the 

TG special function are shown in Figure 

7c. 

    To compare the results of the TG with 

the results of model-specific special 

functions, a structural index of 1 was 

selected. The estimated depth from TG is 

very close to the depths obtained from 

model-specific special functions. 

    Figure 7d shows the depth estimated 

from LW special function. Using 

Equation 8, the structural index is 

estimated as being approximately equal 

to 1.2, which is very close to the 

theoretical structural index of an infinite 

horizontal cylinder model (Figure 7e). 

The SHI criterion was applied to remove 

spurious estimations from all special 
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function results. The estimated source 

locations and shape factor are 

superimposed on the calculated 

normalized source strength at 100 m 

above the observation level plotted in 

Figures 8a and 8b, respectively. From 

these figures, it can be observed that the 

estimated depths (Equation 4) from NSS 

are close to those of the other special 

functions assuming SI=1. It should be 

noted that upward continuation of 100 m 

was applied to the data before calculation 

of the NSS special function. 
 

4    Field Example 

The application of the curvature method 

to real gravity data is demonstrated on a 

data set from the Safoo manganese 

deposit, northwest of Iran. The objective 

is to locate the geological bodies using 

curvature analysis of special functions. 

Safoo manganese deposit is located about 

25 km north of Chalderan city (Siyah 

Cheshmeh) and southwest of Maku, 

northwest of Iran. This area is placed 

structurally and geologically within the 

ophiolite zone in the northwest of Iran 

(known as the Khoy ophiolite). In the 

upper layers of the ophiolite and near the 

contact with pelagic limestones, deposits 

of manganese in various forms (e.g.  

lenticular, massive and strip-shaped) have 

been found. In Safoo area, manganese 

deposits are located within red calcareous 

pelagic shales and pelagic limestone. The 

mentioned rocks are cut by mafic dikes 

(diabase) in some parts. At least, three 

mineralized horizons were found; the 

largest of which is 50 m long and 5 m 

thick. The main mineralized resources are 

surrounded by pelagic rocks in different 

horizons. Geological information showed 

that manganese ore occurs at a depth of 3 

m to 25 m. 

    Gravity data were collected on an 

approximately regular grid with a line 

spacing of 9 m and over the central 

anomaly about 5 m. Figure 9a shows the 

Bouguer gravity map superimposed on 

the location of stations. The residual 

anomaly was obtained by subtracting 

one-order trend from the Bouguer 

anomaly (Figure 9b). A relatively large 

anomaly elongated in north-south 

direction (near the center of the region) 

can be seen on Figures 9a and 9b. Data 

were interpolated to a grid using the 

minimum curvature algorithm. Curvature 

attributes were calculated using the 

method described above from the residual 

gravity anomaly.  

    Solutions with an unreliable structural 

index (SI) and SHI (solutions outside of -

1  SI  2 and 0.375  SHI  0.625) and a 

depth to source with negative values are 

rejected. Figure 10 shows results of 

source location and structural index using 

LW and TG special functions. The 

estimated structural index  (Figure 

10b) is used as an input to TG (Figure 

10c). The estimated depths to source for 

the central body are mainly between 5 m 

to 15 m, but the eastern edge is not well 

delineated by the total gradient and local 

wavenumber special functions. The 

gravity gradient tensor components are 

calculated as described by Mickus and 

Hinojosa (2001). Figure 11 shows that 

the NSS over the central anomaly 

enhances the eastern and western edges 

of the gravity source. The estimates of 

depths to source (Equation 4) and shape 

factor of causative bodies (by assuming 

SI = 0.6), superimposed on the NSS map, 

are plotted in Figure 11 (a and b), 

respectively. The clustered solutions 

along the edges of the central anomaly 

agree very well with geological 

information. The western and eastern 

edges of the central anomaly are well 

delineated by a set of solutions, and the 

depth is estimated about 6 m for both 

edges. The normalized source strength 

yields two positive ridges located 

approximately at the edges.  
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Figure 10. Special function results after applying the SHI criterion for Safoo manganese ore. a) Depth 

estimation from LW. b) Structural index ( 0.6SI  ). c) Depth estimation from TG assuming SI = 0.6. In these 

figures, background map is residual gravity anomaly. 

 

  
 

Figure 11. The NSS special function results after applying the SHI criterion for Safoo manganese ore. a) 

Depth and b) shape factor. Background map is NSS special function of Safoo deposit. 

 

5    Results and Discussion 

In this paper, we studied the curvature 

analysis of special functions for 

interpretation of potential field data. 

Phillips et al. (2007) fitted a quadratic 

surface in a least-squares sense to data 

within 3×3 windows. They showed that 

the source location and the structural 

index of sources can be estimated from 

special functions. We used normalized 

source strength (NSS) as a new model-

independent special function, which 

enables us to obtain depth and shape 

factor for a variety of sources. This 

special function has maxima located 

exactly above the anomaly sources in 
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comparison with other special functions 

whose maxima have offset from edges in 

the presence of remanent magnetization. 

For an unknown source, first we use LW 

special function to determine the depth 

and the type of source (structural index). 

Then, the estimated structural index can 

be used as input to TG and NSS special 

functions to estimate depth, so that this 

strategy gives better results. The quality 

of obtained solutions can be evaluated by 

applying thresholds on the shape index 

attribute (SHI), the geometry factor 

(shape factor) and the estimated depth. 

This method was applied on noisy and 

noise-free gravity synthetic models. 

Finally, this method has been tested on 

the gravity data of Safoo manganese ore, 

and the results prove the advantage of the 

proposed method. Using curvature 

analysis as a complete package, we 

obtained a structural index and depth 

value from the local wavenumber special 

function over the eastern edge of the 

central anomaly. The estimated structural 

index was then used as input to total 

gradient and normalized source strength 

special functions to calculate the shape 

factor and depth. The normalized source 

strength exactly determined both eastern 

and western edges of the central anomaly 

plus depth and shape factor.  
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APPENDIX A 

Phillips et al. (2007) used a quadratic 

surface (Equation A1) that is fitted within 

a 3×3 windows of data in a least-squares 

sense and obtained its coefficients.  

(A1) 
2 2( , ) ,S x y ax b y c x y d x e y f      

 

For a quadratic surface, the most positive 

and negative curvatures can be calculated 

using its coefficients as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 2( ) ,posK a b a b c                    (A2)  

 (A2) 
2 2( ) .negK a b a b c                        (A3) 

The most negative and most positive 

curvatures can be combined into the 

following equation to get the shape 

index: 
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tan .

neg pos

neg pos

K K
SHI

K K
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