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Abstract 
The existence of coherent and incoherent (random) noises including high-frequency 
electromagnetic inferences in the Ground Penetration Radar (GPR) signals is inevitable. Therefore, 
the elimination of noise from GPR data before performing any additional analysis is of great 
importance to increase the accuracy of the interpretations. We apply the Total Variation De-noising 
(TVD) and Savitzky-Golay (SG) filter on synthetic and real GPR datasets. For a better perception, 
the same trace of the data is compared after applying the mentioned methods. The results indicate 
that the TVD method is more effective than the common adaptive filtering in the time domain for 
reducing noise such as the SG filter which acts as a low-pass filter for smoothing data based on a 
polynomial least-squares approximation. However, due to the visibility of staircase artifacts using 
the TVD method, GPR data is first transferred to the Empirical Mode Decomposition (EMD) frame 
which is useful for non-linear and non-stationary signal processing, and then the TVD method is 
applied to it. Finally, noise reduction using TVD is compared in the time and EMD domains. The 
comparison of the outputs shows that the TVD algorithm in the EMD domain, based on the 
sequential extraction of the energy belonging to the different intrinsic time scales of the signal, 
provides better noise attenuation than the other algorithms. In addition, TVD-EMD improves the 
continuity in sections and preserves the event forms and signal forms.  
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1    Introduction 

Ground Penetration Radar (GPR) is 
commonly used as a technique that em-

ploys the high-frequency electromagnetic 
waves of about 10 MHz to 1 GHz for im-
aging the shallow subsurface (Jol, 2008). 

To improve the resolution of the GPR 
signals and obtain an accurate prediction 

of underground anomalies, certain pre-
liminary processes are necessary to be 
applied to the data. The remarkable prob-

lem begins with the fact that increasing 
the signal-to-noise ratio (SNR) while ex-

tracting the shape of the GPR trace as 
close as possible to the convolution of the 
source wavelet and the earth's reflectivity 

series, is one of the major challenges that 
researchers have been confronted in re-

cent years. Several studies have been 
conducted on the reduction of the GPR 
noise (Neelamani et al., 2008; Liu et al., 

2017; Oskooi et al., 2015). In this article, 
to estimate the signal of interest, two 
common methods are applied to the syn-

thetic and real GPR data. The Savitzky-
Golay filter which has already proved to 

have a good performance in de-noising 
the seismic data based on the estimation 
of the L2 norm (Liu et al., 2016), is ap-

plied to the GPR data and compared with 
the TVD method consisting in the L1  
norm.  
    The SG filter introduced by Savitzky 

and Golay (1964), can be administered in 
a series of data points as a low-pass filter 

to amplify the SNR while preserving the 
shape of the original signal. Then, the 
smoothed points are calculated by shift-

ing each data point by the value of its ad-
justed polynomial (Boudraa et al., 2007; 

Press and Teukolsky, 1990). Currently, 
this filter is often applied to digital con-
trol system (Kennedy, 2015), ridge detec-

tion in image processing (Jose et al., 
2013), speech recognition (Krishnan et 

al., 2013) as well as geophysical data 
noise reduction (Liu et al., 2016).  
    TVD is a non-linear filtering in the 

time domain introduced by Rudin et al. 

(1992). This method has been generally 

applied in the treatment of sparse signals 
as a penalty function in de-noising (Char-

trand and Staneva, 2008; Chan et al., 
2001) and is defined by the optimization 
formulation. The result is obtained by 

minimizing a particular cost function 
which is non-differentiable (Selesnick, 

2012). The proposed TVD algorithm is 
derived using the maximization-
minimization (MM) approach developed 

by Figueiredo et al. (2006). During the 
resolution process, the MM algorithm 

monitors the minimization of the differ-
ence between observed and desired data 
and simultaneously applies the control 

parameter to the data (Pakmanesh et al., 
2018). This method is applied in decon-

volution (Moghaddam et al., 2019), re-
construction (Wang et al., 2008) and 
compressed sensing (Yin et al., 2008).  

    In GPR dataset, there is a large band-
width around the center frequency and 
noise exists on all frequencies. Thus, to 

solve this problem, the empirical mode 
decomposition method (EMD) is used to 

extract the sub-signals. The EMD method 
is one of the non-stationary and non-
linear data processing techniques intro-

duced by Huang et al. (1998) which is 
based on the decomposition of the energy 

associated with different intrinsic time 
scales of the signal ranging from high-
frequency modes to lower ones. This 

method empirically extracts a non-
stationary signal into a limited set of al-

most stationary and oscillatory sub-
signals, called intrinsic mode functions 
(IMF). Each IMF has different frequency 

components, providing different geologi-
cal and stratigraphic information (Han 

and Van der Baan, 2013). At each stage 
of decomposition, the frequency decreas-
es; therefore, the number of extremes also 

decreases.  
    The main purpose of this study is to 

reduce random noise in GPR data by the 
improvement of time-domain filtering 
based on L1 and L2 norms in the Empiri-
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cal Mode Decomposition (EMD) frame-

work. As a result, in this work, the least-
squares based SG filter is first applied to 

the GPR signals, and the calculated SNR 
is compared to that of the TVD algo-
rithm. After assessing the superiority of 

applying any of the mentioned filters, 
each noisy GPR signal in the de-noising 

procedure is adaptively decomposed in 
the IMFs by the shifting process in the 
EMD operator. Next, the optimal method 

which has better performances to increase 
the SNR is applied to each IMF. This ap-

proach is tested on synthetic and real da-
tasets. The purpose of applying the based 
shift process and splitting non-linear and 

non-stationary GPR signals in IMFs is to 
obtain the almost stationary and linear 

sub-signals by statistical controls.  
 
2    Theory 

The non-stationary signal received from 
the GPR system, X(t), which is generally 
contaminated by noise, can be expressed 

as follows (Oskooi et al., 2015):  
X(t) = s(t)+n(t)                                     (1) 

where s(t) is the main signal of the stud-
ied object corrupted by noise n(t). The 
ultimate goal of de-noising is to bring 

X(t) as close as possible to s(t) while min-
imizing the effect of n(t). 

 
2-1    Savitzky-Golay filter (SG) 

The SG filter is a temporal smoothing 

filter in which a piecewise adjustment of 
a polynomial function by least-squares 

approaches is performed on the signal. 
The characteristics of this filter have been 
well discussed in Luo and Ying (2005). 

In the de-noising process with this meth-
od, we consider that the noisy data X(t) is 

(Sadeghi and Fereidoon, 2018): 
X(l) = s(l)+n(l)        l = 1, … , L           (2) 
which s(l) denotes the l-th sample of s(t). 

The purpose of the SG filter is to recon-
struct s(t) from these samples, so a poly-

nomial P(i) with filter order n (P(i) = 
∑ 𝑎𝑘𝑖𝑘𝑛

𝑘 =0  , where ak is the k-th coeffi-

cient of the polynomial and k = 0, …, n), 

is fitted to smoothing window with the 

number of data points N=2M+1 to mini-
mize the following MSE: 

𝜀𝑛 = ∑ (𝑃(𝑖) − 𝑥(𝑖))2 =𝑀
𝑖=−𝑀

∑ (∑ 𝑎𝑘𝑖𝑘𝑛
𝑘 =0 − 𝑥(𝑖))2𝑀

𝑖=−𝑀                   (3) 

 

The filtered signal in the first stage is the 
value of the polynomial in the central 
point (Y(0)) as follows: 

Y(0) = P(0) = 𝑎0                                   (4) 
The next filtered point is calculated by 

shifting the window by one and repeating 
the operation. The ability of this filter to 

maintain the shape of the signal rather 
than the other conventional filters is one 
of the reasons for selecting this method. 

Moreover, the method is user-friendly 
and has the high processing speed 

(Acharya et al., 2016). 
 
2-2   Total-Variation De-noising (TVD) 

In total-variation de-noising, it is as-
sumed that the form of the noisy data 

y(n) is (Selesnick, 2012): 
𝑦(𝑛) = 𝑥(𝑛) + 𝑤(𝑛)𝑛 = 0, … , 𝑁 − 1 (5) 

where 𝑥(𝑛) is a piecewise constant signal 

and 𝑤(𝑛) is white Gaussian noise. 
    TVD estimates the signal 𝑥(𝑛) by 

solving the following minimization prob-
lem (Selesnick, 2012): 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ |𝑦(𝑛) − 𝑥(𝑛)|2 +𝑁−1
𝑛=0

𝜆 ∑ |𝑥(𝑛) − 𝑥(𝑛 − 1)|𝑁−1
𝑛=1                     (6) 

where 𝜆 is the regularization parameter 

that controls the degree of smoothing. 
This parameter plays a critical role in the 

de-noising process. When λ=0, there is 
no smoothing and the result is the same 
as minimizing the sum of squares. If λ is 

too small, then errors in the data will be 
extremely increased caused by a very 

noisy approximate solution. If λ is too 
large, the approximate solution will not 
be consistent with the data. Thus, the 

choice of the regularization parameter is 
critical to achieve just the right amount of 

noise removal (Selesnick, 2012). It is 
possible to determine λ by examining a 
range of values and selecting the optimal 

value. However, this is only a subjective 
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choice. The methods of Generalized 

Cross-Validation (Ebrahimi et al., 2017) 
and L-curve (Hansen, 1999) can be used 

to obtain an optimum regularization pa-
rameter and the number of iterations. 
The matrix D is defined as: 
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         (7) 

    The Total Variation of N-point signal 

𝑥(𝑛) is given by Selsenick (2012): 
(8) 

𝑇𝑉(𝑥) ≔ ‖𝐷𝑥‖1 = ∑ |𝑥(𝑛) − 𝑥(𝑛 − 1)|𝑁−1
𝑛=1   

In the above equation, 𝐷𝑥 is the first-
order difference of an N-point signal of x 

where D is of size (N-1)N. With the 
above notation, TVD problem (6) is writ-

ten compactly as Selsenick (2012): 

𝑎𝑟𝑔 𝑚𝑖𝑛{𝐹(𝑥) =
1

2
𝑎𝑟𝑔 𝑚𝑖𝑛‖𝑦− 𝑥‖2

2 +

𝜆‖𝐷𝑥‖1}                                                  (9) 
    To solve the optimization problem of 

equation (9), the MM algorithm, which is 
well described in Selesnick (2012), is 

used. 
   In the study of Selsenick (2012), an op-
timal solution is satisfied by two basic 

conditions which are as follows: 
1. If x is the solution to the TV de-

noising problem, then it must satisfy: 

|𝑠(𝑛)| ≤
𝜆

2
       n = 0,……, N-1            (10) 

where s(n) is the cumulative sum of the 
residuals: 

𝑠(𝑛) ≔ ∑ (𝑦(𝑘) − 𝑥(𝑘))𝑛
𝑘 =0               (11) 

2. It is further necessary that x(n) 

satisfies: 
(12) 

𝑑(𝑛) > 0, 𝑠(𝑛) =
𝜆

2
,𝑑(𝑛) < 0, 𝑠(𝑛) =

−
𝜆

2
    

d(n) = 0,                        s(n) < −
λ

2
 

where 𝑑(𝑛) = 𝑥(𝑛 + 1) − 𝑥(𝑛) is the 

first-order difference function of x(n). 
    The condition (12) requires the points 

to lie on a curve consisting of three line 

segments (a double-L shape) (Selsenick, 

2012). 
    The number of iterations is another 

subsidiary parameter for levelling out the 
cost function and converging the algo-
rithm (Selsenick, 2012). The small itera-

tion number prevents the algorithm to be 
converged and the large one increases the 

computation time. 
 
2-3  Empirical Mode Decomposition 

(EMD) 

The EMD method is associated with the 

decomposition of the given signal X(t) 
into a series of Intrinsic Mode Functions 
(IMFs), through the selection process, 

each with a separate time scale. The pro-
cedure of signal decomposition with the 

EMD method is well described by Huang 
et al. (1998) and Boudraa et al. (2007). 
The main advantage of EMD is that the 

basis functions are derived from X(t) it-
self. The decomposition is dependent on 
the local signal time scale and delivers 

adaptive basis functions. Each IMF re-
places then the detail signals of X(t) at a 

certain scale of the frequency band 
(Flandrin et al., 2004). The EMD sepa-
rates the highest frequency oscillation 

that remains in X(t). So, the measured 
IMF should satisfy two basic conditions: 

1) the number of extrema and the number 
of zero crossings are either equal or differ 
at most by one; 2) at any point, the mean 

value of the envelope defined by the local 
maxima and the envelope defined by the 

local minima is zero. Thus, locally, each 
IMF contains lower frequency oscilla-
tions than the one just extracted before 

(Boudraa et al., 2007). X(t) needs to have 
at least two extrema, one minimum and 

one maximum to be successfully decom-
posed in IMFs. The shifting process in 
this method has two achievements: to 

remove riding waves and to smooth une-
ven amplitudes. This method decomposes 

the given GPR multicomponent signal 

X(t) into L zero-mean IMFs (i.e., ℎ(𝑖)(𝑡)) 
with distinct time scales by statistical 
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methods: 

𝑋(𝑡) = ∑ ℎ(𝑖)𝐿
𝑖=0 (t)+d(t) 1≤ i ≤ L       (13) 

where d(t) is a nonzero-mean residual. 
The shifting process satisfies the follow-

ing relation: 

𝑋(𝑖)(𝑡) =

{
𝑋(𝑡)                                , 𝑖 = 1

𝑋(𝑡) − ∑ ℎ(𝑗) (𝑡)    , 𝑖 ≥ 2𝑖−1
𝑗=1

              (14) 

 

3    Application of suggested methods 

on simulated GPR signals 

To evaluate the efficiency of the men-

tioned de-noising methods on artificial 
GPR signals, a synthetic model was pro-
duced using a full-wave solver of Max-

well's equations (GPRMax 2.0). The syn-
thetic model chosen in this study, as 

shown in Fig. 1-a, is considered to be 
composed of three layers with different 
dielectrics and conductivities, where the 

upper layer is made of concrete (𝑡1=1m, 

𝜎1 = 0.005
𝑠

𝑚
, 𝜀𝑟1 = 6), the middle layer 

of wet sandy soil (𝑡2=2m, 𝜎2 =

0.1
𝑠

𝑚
, 𝜀𝑟2 = 25) and the third layer is a 

saturated sandy soil (𝑡3=1m, 𝜎3 =

0.07
𝑠

𝑚
, 𝜀𝑟3 = 30). First, to evaluate the 

performance of each method, Gaussian 
noise was added to the data. Before any  
 

de-noising scheme, the SNR of the noisy 

data is 2 dB. As it can be seen in Fig. 1-b, 
the noise has destroyed the data; conse-

quently, the second reflector has been 
completely disappeared. In the noise re-
duction process, we applied two de-

noising methods (SG filter and TVD). 
For the first step, we used the SG filter 

method based on the criterion of least 
squares (which depends on the L2 norm) 

to estimate a real signal from the noisy 
one. To obtain the best compromise be-
tween noise reduction and signal mainte-

nance, the window size and the polyno-
mial degree were selected by trial and 

error. The result of applying a time-
domain SG filter on the synthetic data is 
represented in Fig. 1-c. The SNR calcu-

lated as a measure of the effectiveness of 
noise reduction after applying the SG fil-

ter is 5.11 dB. As seen in Figs. 4-c and 4-
d, the SG filter can remove the effect of 
background noise from the data so that 

the second reflector is almost visible. 
However, this technique, as a conven-

tional method, only makes the data more 
smooth and introduces undesirable events 
in the signal after de-noising. It indicates 

that the method cannot distinguish be-
tween signal and noise components.  

 

 
Fig 1. (a) The clean synthetic GPR model. (b) GPR data of the synthetic model contaminated by white 

Gaussian noise with SNR = 2 dB. (c) De-noised synthetic GPR data after using the SG filter. (d) De-noised 

synthetic second trace of GPR data after using the SG filter. 
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    In this research, to obtain an appropri-

ate norm for de-noising GPR data, we 
applied the TVD method which is essen-

tially the L1 norm of derivatives. Accord-
ing to Selesnick and Chen (2013), TVD 

is most suitable for constant piecewise 
signals (Selesnick, 2012); therefore, to 
modify this method in GPR signal pro-

cessing, the EMD framework was used to 
improve the de-noising quality by 

smoothing the GPR signals. Since ran-
dom noise in GPR data does not follow 
the Gaussian distribution, to present the 

capability of the TVD method, Gaussian 
and non-Gaussian noisy synthetic GPR 

data with SNR = 2 were targeted for at-
tenuation. The presence of noise in the 
GPR data is more evident in higher fre-

quencies. However, these noises are also 
present at lower frequencies, but it has 

been proven to give more weight to high-
er frequencies. Therefore, the higher fre-
quency content modes were selected. The 

higher modes often have much less ran-
dom noises because they are closer to the 

DC signal. As a result, these modes have 
been ignored in the application of the 
TVD method in this research. The criteria 

for ignoring the IMFs are to calculate the 
averaging of the variance of all IMFs in 

each trace. In other words, after each de-
composing step in the EMD method, the 
frequency content decreases and turning 

to the fact that the frequency content of 
random noises are often in high frequen-

cy ranges, the primary IMFs were select-
ed as the most concentrated steps for de-
noising of the decomposed GPR data. 

Experimentally, the IMFs that have a var-
iance of less than half of the average var-

iance of all IMFs, are ignored. By apply-
ing the EMD method, the concentration 
of random noises appears in certain 

modes, so the assumption of the frag-
mented signal will be more consistent 

with the TVD method. This focus makes 
the proposed method more effective than 
the time domain. It is very interesting to 

use different values of D for smoothing, 

but in the strategy presented in this study, 

only the capability of the EMD method 
has been relied on. Selecting of parame-

ters for the fragmental algorithm is large-
ly experimental and expertise-based. 
Then, replacing this issue by changing 

the framework can help the researchers in 
presenting methods industrially. The re-

sults of the application of TVD and TVD-
EMD on simulated Gaussian and non-
Gaussian noisy synthetic GPR data are 

presented in Figs. 2 and 3, respectively. 
To compare two approaches, all the input 

parameters, including the regularization 
parameter and the number of iterations, 
were considered to be equal. According 

to these figures, decomposing each trace 
to optimum IMFs (Figs. 2-e and 3-e) and 

then applying the TVD method on the 
selected IMFs (Figs. 2-g and 3-g), de-
pending on measured average variance 

(Figs. 2-f and 3-f), indicate the superiori-
ty of the TVD-EMD compared to the 
TVD method. The SNR calculated after 

using TVD for data corrupted by Gaussi-
an noise is 7.19 dB and for non-Gaussian 

is 6.38 dB. As shown in Figs. 2-c, 2-f, 3-c 
and 3-f, the TVD was able to reduce the 
effect of noise in the data and also the 

second reflector is better visible. The in-
crease in the amount of SNR compared to 

the SG filter also confirms this fact. 
However, the events with lower ampli-
tude were more influenced compared to 

the clean data of the de-noising process. 
On the other hand, events of higher am-

plitude are less influenced. Furthermore, 
the restoration of the layer border was not 
well done and the staircase artifacts are 

visible. It produced a large number of 
undesirable events resulting from the im-

plementation of filtering. The SNR calcu-
lated after the application of TVD-EMD 
is 8.71 dB for Gaussian and 7.83 dB for 

non-Gaussian noisy synthetic GPR data. 
As shown in Figs. 2-d, 2-h, 3-d and 3-h, 

TVD-EMD was more effective than 
common TVD in mitigating the effects of 
noise and restoring borders. Unfavorable 
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events are significantly reduced and the 

decrease in signal amplitudes was re-
solved compared to TVD.  

    Through the representation of the pow-
er spectrum density, it is possible to bet-
ter see the elimination of noise and signal 

as a fundamental quantitative and qualita-
tive challenge. Because applying many 

filters may cause some frequency ranges 
to be omitted, the most important result 
that can be obtained from power spec-

trum is the analysis of the frequency re-
sponse of the applied filter. Therefore, it 

is very necessary to study the power 
spectrum in maintaining the signal. An-
other point that should be mentioned is 

the issue of noise attenuation. The 
amount of noise attenuation that corre-

sponds to the selection of applied filter 
parameters, can be instrumental in deter-
mining the effective parameters. Fur-

thermore, changes in the signal are not 
visually visible in the time domain; ac-
cordingly, the power spectrum can be a 

practical tool for comparing methods in 
the frequency domain. 

    Due to the proximity of the SNR calcu-
lated in the qualitative and quantitative 
evaluations of the de-noising and signal 

maintenance methods, the power spectral 
densities of the noisy and de-noised data 

are represented in Figs. 2-i and 3-i. 
    At lower frequencies, the two methods 
of TVD and TVD-EMD have almost the 

same downward trend and are not suc-
cessful. However, as the frequency range 

increases, the trend of the TVD-EMD 
coincides with the true signal (red line) 
which indicates the signal holding power. 

In addition, at higher frequencies, the 
maximum noise reduction is obtained by 

the TVD-EMD method. It should be also 
mentioned that the implementation of this 
method has more computational cost than 

the TVD method. Also, when there is a 

large amount of random noise in the GPR 

data, TVD-EMD is recommended in 
terms of signal retention and noise atten-

uation. On the other hand, the best results 
are obtained with optimum regularization 
parameter λ and the number of iterations. 

    None of the proposed methods can 
eliminate the noise. This is justified by 

the fact that the presence of noise in geo-
physical data leads to the stability of in-
version processes in some operators such 

as deconvolution. Every method, regard-
less of its type and the framework in 

which it is implemented, has side effects 
on the signal. It is also important to note 
that no method is ideal and the noise be-

havior is very complex and unpredicta-
ble. The purpose of this study is to show 

that the EMD method, despite its compu-
tational simplicity, can be a platform for 
implementing other noise reduction 

methods in geophysical studies. Of 
course, these results may not be the best, 
but this style of study has not yet been 

implemented in geophysical topics espe-
cially in GPR noise reduction studies and 

is the first of its kind. Therefore, this 
study is an introduction to the optimiza-
tion of inversion-based filters in the EMD 

framework.  
    To satisfy the optimal solution for the 

TVD method in which the input parame-
ters of TVD-EMD are the same, two 
basic conditions including the cumulative 

sum of the residuals (eq. 10) and the first-
order difference function of output (eq. 

12) are depicted as scatter plots in Figs. 
2-j and 2-k and Figs. 3-j and 3-k. It can 
be seen that the cumulative sum s(n) is 

bounded by lambda and the TVD solu-
tions for each Gaussian and non-Gaussian 

data require the points to lie on the graph 
of the sign functions. The selected lamb-
da is the reliable value lied on a double-L 

curve. 
 

 
 

 

https://en.wikipedia.org/wiki/Regularization_(mathematics)
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Fig 2. (a) The clean synthetic GPR model. (b) Gaussian noisy input with SNR=2. (c) De-noised by TVD. (d) 
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De-noised by TVD-EMD. (e) Decomposing of each trace to IMFs. (f) The variance of each  IMF. (g) TVD 

applied on selected IMFs of one of the traces corrupted by Gaussian noise. (h) Comparison of TVD and 

TVD-EMD on one trace. (i) The power spectrum of GPR data after applying TVD and TVD-EMD with 

λ=0.03. (j) The cumulative sum s(n) bounded by lambda. (k) Scatter plot of the first-order difference function 

of output. 
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Fig 3. (a) The clean synthetic GPR model. (b) Non-Gaussian noisy input with SNR=2. (c) De-noised by 

TVD. (d) De-noised by TVD-EMD. (e) Decomposing of each trace to IMFs. (f) The variance of each IMF. 

(g) TVD applied on selected IMFs of one of the traces corrupted by non -Gaussian noise. (h) Comparison of 

TVD and TVD-EMD on one trace. (i) The power spectrum of GPR data after applying TVD and TVD-EMD 

with λ=0.03. (j) The cumulative sum s(n) bounded by lambda. (k) Scatter plot of the first -order difference 

function of output. 

 

4    Application of suggested methods 

on real GPR data 

To evaluate the functionality of the  
proposed de-noising method in the case 

of real data, we process a set of real GPR 
data collected using a 100 MHz antenna 
from the GSSI (Geophysical Survey  

System, Inc.) company. The actual data 
after applying the gain as an amplitude 

recovery function on the data is repre-
sented in Figs. 4 and 5-a. Concerning the-

se figures, the data quality is poor and the 
data is full of noise from various un-
known sources. 

 

 
Fig 4. The real GPR dataset using a 100 MHz antenna. 

 
   The resulting de-noised data after ap-
plication of the TVD and TVD-EMD 

methods with magnification are repre-
sented in Figs. 5-b and 5-c. Furthermore, 

to better demonstrate the capability of 
each method, the second trace of the real 
data as an arbitrary trace before and after 

de-noising is extracted (Fig. 5-d). Ac-
cording to Fig. 5-b, after applying TVD, 

it can be seen that the noise part has been 
slightly removed; therefore, the bounda-
ries of many layers have been distorted 

and the events in the final tales of the da-
ta do not appear precisely. On the other 

hand, the structures of lower amplitudes 
were more affected by de-noising and the 
structures of higher amplitudes were bet-

ter specified. In each event, the restora-
tion of the boundaries has not been well 

resolved. The reason is that the output of 
the TVD filter is obtained using the nu-

merical convex algorithm which is very 
effective in piecewise constant signals 
according to the Selesnick (2012). 

   In this approach, the TVD has been 
modified in the EMD framework to be 

more applicable in the non-stationary 
GPR signals. Therefore, the reliable re-
sults can be achieved after applying the 

EMD method on each trace (Fig. 5-e) and 
using experimental strategy including 

ignoring of each IMF smaller than half of 
the average variance (Fig. 5-f). The re-
sults of the 60 traces are shown in Fig. 6 
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which indicates the superiority of the 

TVD-EMD method compared to the 
TVD algorithm. By using this filter, the 

boundary of the layers is well detected 
and a logical smoothness on the path of 
each trace is seen. Moreover, the struc-

tures with low and high amplitudes are 
well detectable compared to the results 

obtained when the temporal filter (TVD) 
is applied. According to the results  
illustrated in Fig. 6-c, it can be concluded 

that by using the TVD-EMD method, the 
coherence and continuity of the layers are 

increased and the details of the data are 
better demonstrated by this method. 
When using the TVD-EMD method, the 

noise was remarkably attenuated, the  
adverse events decreased considerably 

and the decrease in signal amplitudes was 
also resolved compared to those of the 
TVD method. The boundaries of layers 

marked in Fig. 6-c can confirm the high 

capacity of the TVD-EMD algorithm 
compared to the TVD method. The power 

spectral densities of the noisy and  
de-noised data after application of the 
TVD and TVD-EMD methods have been 

represented in Fig. 6-d. From this figure, 
it is revealed that the TVD method has 

only succeeded in eliminating  
high-frequency noise in the context of the 
whole time domain, and at low and in-

termediate frequencies, it treats like a true 
signal with unwanted structures or  

artifacts which are observed in Fig. 5-b. 
However, by examining the power spec-
trum of TVD-EMD, the appropriate ef-

fect of this filter can be seen. At the low-
est frequencies, some noises have been 

added to the data, but in the middle and 
high frequencies, noise reduction has 
been done well.  
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Fig 5. (a) The real GPR data after applying AEC gain. (b) De-noised by TVD. (c) De-noised by TVD-EMD. 

(d) De-noised second trace by TVD and TVD-EMD with λ=1.5. (e) Decomposing of each trace to IMFs. (f) 

The variance of each IMF. (g) TVD applied on selected IMFs of one of the traces corrupted by noise.  
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Fig 6. (a) 60 traces of the real GPR data. (b) De-noised by the TVD method. (c) De-noised by the TVD-EMD 

method. The red flash symbol implies the capability of the TVD-EMD in tracking the path of the layers. (d) 

Power spectral densities of data by TVD and TVD-EMD. 

 

 
5    Conclusions 

This article focuses on the reduction of 
random noises in GPR data by applying 

total variation de-noising based on the 
empirical mode decomposition frame-
work. First, the TVD method and the SG 

filter were applied to the synthetic data 
created from a three-layer model with 

different physical properties. Adding 
white Gaussian noise to the synthetic data 
gave an SNR = 2 dB. By applying the SG 

filter to the data, the SNR increased to 
5.11 dB. After applying the TVD, this 

amount increased to 7.21 dB. Depending 
on the fact that the increase in SNR is 
representative of the efficiency of the de-

noising method, one can conclude from 
SNR and 1D diagram calculated from the 
two methods on synthetic data that the 

TVD method has provided better results 
than the time domain adaptive filter 

based on the SG filter. In addition, the 
TVD method was applied to noisy data 
both in standard form and as part of em-

pirical mode decomposition on noisy 

Gaussian and non-Gaussian noisy syn-
thetic and real GPR data. By comparing 

the results, it can be seen that the two 
methods of TVD and TVD-EMD can 
considerably mitigate the noise effects. 

However, the implementation of TVD in 
the time domain creates artificial noises 

due to filtering. By decomposing each 
trace into a series of IMFs, and applying 
TVD on each IMF, the process of de-

noising GPR data is improved. We con-
clude that the TVD-EMD method pre-

serves events and signals. It decreases 
staircase events and improves continuity 
in sections.  

For better de-noising of the GPR signal, 
we plan to study the improvement of the 
SG filter algorithm in each GPR IMF. 

Owing to strong theory, application of 
variational mode decomposition (VMD) 

instead of the EMD method is also on our 
agenda for future studies.  
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