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Abstract 

In this paper, a modified version of strength Pareto evolutionary algorithm SPEA (II) is used as a 
multi-objective optimization method in gravity data modelling. In this method, a two-dimensional 
gravity inversion problem is solved by iteratively random creation of forward models. It is shown 
that it can be used as a fast and effective inversion tool in the depth modelling of two-dimensional 
layer problems with applications in depth-to-basements, geometry of bedrocks and sedimentary 
basins modelling cases. Owing to the direct use of the regularization term as a separate objective 
function, smooth models have a high chance of being selected as final solutions, which makes the 
results more acceptable and easier to interpret. The most important advantages of this method are 
that it works independently of the regularization coefficient; thus, there is no need to run the 
algorithm so many times to find a proper regularization parameter. Furthermore, there is no need to 
directly deal with inverse formulations, and last but not least, by using a multi-objective algorithm 
as a global optimization method, convergence to a stable solution does not depend on the initial 
model, the way classical inversion methods do. For testing the algorithm, a synthetic model is used 
for layer boundary modelling and to assess the stability of this algorithm, white Gaussian noise is 
added to the synthetic model. To evaluate the validity of this method, real data from the Recôncavo 
basin in Brazil is considered for processing and inversion, and the results are compared to the ones 
from previous studies. All computations have been done in the GNU Octave 5.1.0 environment. 
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1    Introduction 

Inversion of gravity data is generally de-
fined as an ill-posed problem. A good 

inversion algorithm needs to guarantee 
that the suggested results are reasonable 
and stable, satisfying mathematical, geo-

physical and geological conditions simul-
taneously. The necessity for meeting all 

these conditions in one solution makes 
the solving process rather long and hard. 
Thus, different algorithms were proposed 

for either 2D or 3D inversion of gravity 
data with the aim of improving the geo-

logical validity of results and also, im-
proving the different aspects of the inver-
sion process such as complexity and time 

reduction. Among them, evolutionary 
algorithms, especially Genetic Algorithm 

(GA), are well known as global optimiza-
tion methods. Lawrence and Phillips 
(2003) applied a niching genetic algo-

rithm as an inversion tool for gravi-
ty/topography data. Zhang et al. (2004) 
used a parallel genetic algorithm for in-

version of gravity data as a mean to in-
vestigate the crustal structure in central 

Taiwan. Montesinos et al. (2005) used 
the genetic algorithm for 3D modelling of 
gravity data for volcanic sources in the 

Canary Islands. 
    Multi-objective optimizations (Coello, 

1999) are the emerging ones among 
global optimization methods which their 
applications are well established in ap-

plied geophysics. These methods are 
generally useful especially when inver-

sion of different data types are required, 
in which using classical inversion tech-
niques gets complicated due to a large 

number of parameters. Akca et al. (2014) 
inverted both magnetic resonance and 

vertical electric soundings with a multi-
objective genetic algorithm and Miernik 
et al. (2016) used a Pareto based multi-

objective method for inversion of 2D 
gravity and magneto-telluric data. 

    In most researches, Tikhonov objective 
function is used as a cost function for in-
version of potential data. This function 

itself is a summation of two different 

terms: the data misfit (fidelity term) and 
the regularization function. A general ap-

proach is to augment a weighted regulari-
zation function to increase the stability of 
the inversion process. A suitable regular-

ization function with a proper weight 
would reduce the model search space, 

decrease the time of the inversion process 
and shrink the non-unity of solution 
space. But finding a suitable regulariza-

tion function and also estimation of ap-
propriate weight itself has been an inter-

esting topic for researches. For estimating 
the regularization coefficient (the trade-
off between regularization term and data 

misfit term), different optimization meth-
ods are proposed such as Morozov dis-

crepancy principle formulated by Moro-
zov (1966) and generalized cross-
validation by Golub et al. (1979). Hansen 

(1992) used the L-curve method in dis-
crete ill-posed problems analysis, and Li 
and Oldenburg (1999) used it for inver-

sion of geophysical data.   
    In this paper, we use a modified ver-

sion of a multi-objective algorithm de-
veloped by Zitzler et al. (2001) as an in-
version tool for our gravity data. SPEA II 

(Strength Pareto Evolutionary Algorithm 
II) is originated from the first version of 

SPEA (Zitzler and Thiele, 1999) with 
some technical developments that turn it 
into a completely effective algorithm. In 

general, multi-objective algorithms 
search for a solution set by simultaneous-

ly direct optimization of different func-
tion without using gradient information, 
the way Lagrangian method does. Better 

solutions are selected by the concept of 
domination and dominant solutions form 

a possibly acceptable solution subset 
called Pareto front. An evolutionary algo-
rithm (which is GA here) is then used for 

the creation of another solution set de-
rived from previously dominant solutions 

for the next iteration of the algorithm. 
This loop will be repeated for a preset 
number or when a specific condition is 
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met.  

    We use this algorithm for inversion of 
2D gravity data, specifically for model-

ling a 2D layer boundary with a prede-
fined homogenous density contrast. Us-
ing gravity technique in layer boundary 

determination, especially for the case of 
sedimentary basins, is the most applica-

ble method among potential exploration 
techniques. Other methods – magnetic or 
electric – may not provide enough infor-

mation due to the lack of discernible sus-
ceptibility or resistivity contrast in the 

area, whereas in most cases there is a sig-
nificant density contrast between sedi-
ments and bedrocks. For gravity model-

ling, we use two-dimensional Talwani 
method (Talwani et al. 1959) as a model 

generator in the optimization algorithm. 
For regularization strategy, we use a reg-
ularization term not in form of an aug-

ment to the data misfit term, but as a sep-
arate objective function. To achieve a 
more efficient algorithm, some important 

modifications are applied in genetic oper-
ations. Different synthetic models are 

tested in order to evaluate the stability 
and efficiency of the algorithm and the 
results are analyzed. As a practical appli-

cation of this method, a profile of gravity 
data in the Recôncavo basin in Brazil is 

considered for inversion and the results 
are presented. 

 
2    Research method 

2-1    Multi-objective literature and 

structure 

In this algorithm, our first aim is to 

search for the subsurface geometry of a 
2D layer with a predefined homogenous 
density distribution under a profile of ob-

served gravity data, so the parameters we 
are trying to determine in the models are 

the depth values. An array of depth pa-
rameters will be named a solution. A so-
lution with its gravity output is called a 

model. A set of solutions is called a 
population. In the each iteration of the 

algorithm, a population is available for 

assessment. Typically, generally solu-

tions that create a better gravity effect are 
preferred. A better gravity effect means a 

better fit to the observed data and to be in 
accordance with constraints defined by 
the operator or a-priori information.  

    The exact meaning of a better solution 
is defined by the concept of dominance, 

which will be described later in this pa-
per. After the assessment of all solutions 
in a population, dominant solutions are 

saved in a finite space called archive. The 
solutions in the archive are the best solu-

tions found in the algorithm and they will 
be used for generation of next possible 
solutions and creation of the next popula-

tion. In the next iteration, the newly cre-
ated solutions and the previous archive 

solutions will be compared and assessed 
again, and the better solutions will be re-
written in the archive. This cycle will 

continue to a finite iteration number or 
when a special condition met. 
  

2-2    Forward modelling 

To calculate the gravity effect of a solu-

tion, as it is shown in Fig. 1, the Talwani 
method is used as it is expressed by Tel-
ford et al. (1990): 

𝑮 = 2𝜸𝝆.∑ 𝒂𝒊 sin ∅𝑖 . cos ∅𝑖 [(𝜃𝑖 −𝑵 
𝑖=1

𝜃𝑖+1) +

tan ∅𝑖 . log{
cos 𝜃𝑖 (tan 𝜃𝑖 −tan ∅𝑖)

cos 𝜃𝑖+1(tan 𝜃𝑖+1−tan ∅𝑖)
}]      (1) 

where 𝑎𝑖 is: 

𝒂𝒊 =  (𝒙𝒊+𝟏 − 𝒛𝒊+𝟏 . cot ∅𝑖)                  (2) 
 

 
Fig 1. Polygon approximation for a two-

dimensional substructure and the gravity observa-

tion point (P).  
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    Here, 𝜌 is the density contrast between 

the polygon and environment, 𝛾 is the 

gravitational constant and G is the verti-
cal component of gravity effect from the 

two-dimensional polygon. The parame-
ters 𝜃𝑖 and ∅𝑖 pertaining to node i are 

shown in Fig. 1. N is the number of 
nodes of the polygon. The goal is to de-

termine the geometry of a layer confined 
by topography from the top, so for this 
case of study, the upper boundary of 

Talwani polygon is the topography and 
the lower boundary of the polygon is 

considered as the geometry of layer. This 
means the parameter space for a solution 
can be depicted as a (1×N) array. Talwani 

formula is based on the fact that by calcu-
lating a line integral around the perimeter 

of an n-sided polygon, one can compute 
the vertical component of the gravitation-
al attraction of a 2D n-sided polygon 

(Hubert, 1948): 
𝑮 =  2𝜸𝝆∫ 𝒛𝒅𝜽.                                   (3) 

Thus, many different formulations of this 
integral are presented. Here a vectorized 

version of the main formula presented by 
Telford et al. (1990) is used to increase 
the efficiency of the code. 

  
2-3    Initial set of solutions 

For the first iteration of the multi-
objective algorithm, we need a set of ran-
dom depth models as candid solutions 

(initial population). These candid solu-
tions will be used as starting points for 

further model creations and assessments. 
One of the main advantages of using 
global optimization methods over classi-

cal linear inversion techniques is that 
classical inversion methods heavily de-

pend on the initial models while global 
optimization methods investigate the en-
tire search space which makes the algo-

rithm - in most cases - avoid local mini-
ma. However, this does not mean the al-

gorithm will always end up in globally 
optimized solutions, especially when a 
proper coverage of search space is not 

available. Thus, sufficient diversity 

among initial models plays an important 

role in the exploration of search space in 
the next iterations, so using a large num-

ber of totally random initial models will 
be a good strategy. 
 

2-4    Objective functions 

For the inversion of gravity data in multi-

objective functions, similar to the 
Tikhonov function, minimizing two ob-
jective functions are considered. One 

function is the fidelity term and the other 
is the constraints term, called regulariza-

tion function. For a suggested model (m) 
with an array of depth values (z), the 
general form of fidelity term is the 

weighted L2 norm of errors: 
 𝒇𝟏(𝒎) = ||𝑾𝑑(𝑮𝒎 − 𝒈𝑜𝑏𝑠 )||2          (4) 

where the term 𝑮𝒎 is the gravitational 

attraction of the suggested model (m), the 
𝒈𝑜𝑏𝑠  is observed gravity and 𝑾𝑑 is the 

weighting matrix of the observed data. In 
the multi-objective algorithm and for the 

case of 2D layer boundary determination, 
we compute RMSE for gravity misfit er-

ror of all observation points like i: 
(5) 

𝒇𝟏(𝒎) = √
1

𝑵𝑜𝑏𝑠

∑ (𝒈(𝒎)𝑖
𝑐𝑎𝑙 − 𝒈𝒊

𝑜𝑏𝑠 ) 2
𝑖   

The gravity effect of model (m), which is 

(𝒈(𝒎)𝑖
𝑐𝑎𝑙) will be calculated from the 

Talwani forward method as mentioned 
above. For the other objective function 

(the regularization term), the second term 
of Tikhonov function is the initial sug-

gestion: 
 𝒇𝟐(𝒎) = 𝜆2||𝑾𝑚 (𝒎 − 𝒎0)||2          (6) 

where 𝑾𝑚 is the weighting matrix of 

constrains, 𝜆 is the regularization parame-

ter and 𝒎0 is an initial model suggested 
by the user. As we discussed in previous 

section, in global optimization methods, 
we run the algorithm independent to an 
initial model like 𝒎0. Furtheremore, by 

separate use of objective functions 

𝒇𝟏(𝒎) and 𝒇𝟐(𝒎), and avoiding the 
summation, the regularization parameter 

𝜆 will be eliminated. Consequently, the 

last formula will be shrunk to: 
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 𝒇𝟐(𝒎) = ||𝑾𝑚(𝒎)||2                        (7) 

In this paper, the first norm of the model 

constrains in form of Mean Absolute  
Error (MAE) of depth values is used:  

𝒇𝟐(𝒎) =
1

𝑵𝑚

∑ |(Δ𝒎)|𝑖                          (8) 

 

2-5    Dominance and Pareto front 

After creation of a set of random initial 
solutions (models), both objective func-
tions will be computed for every single 

solution and these solutions are compared 
in objective function space (Fig. 2). A 

better solution would be defined as a 
dominating solution if two conditions are 
met: 

 No solution is better than the 
dominant solution for all values of objec-

tive functions. 

 The dominant solution has at least 

one better objective function value than 
the other solutions. 
In this research, we aim to minimize both 

objective functions 𝒇𝟏(𝒎) and 𝒇𝟐(𝒎) 

for a model (m), so for two different 
models m1 and m2, we have three differ-
ent situations. First: 

(9) 
𝒇𝟏(𝒎𝟏) > 𝒇𝟏(𝒎𝟐) ⋀ 𝒇𝟐(𝒎𝟏) > 𝒇𝟐(𝒎𝟐)  
In this circumstance, it is called that solu-

tion m2 dominates solution m1. Second: 
 (10) 

𝒇𝟏 (𝒎𝟏) < 𝒇𝟏(𝒎𝟐) ⋀ 𝒇𝟐 (𝒎𝟏) < 𝒇𝟐(𝒎𝟐) 

In this situation, m1 is the dominant 
solution and m2 is the dominated so-

lution. And finally:  
(11) 
𝒇𝟏(𝒎𝟏) < 𝒇𝟏(𝒎𝟐) ⋀ 𝒇𝟐(𝒎𝟏) > 𝒇𝟐(𝒎𝟐)     

or 
𝒇𝟏(𝒎𝟏) > 𝒇𝟏(𝒎𝟐) ⋀ 𝒇𝟐(𝒎𝟏) < 𝒇𝟐(𝒎𝟐)  

    In this condition, models do not domi-
nate each other. It means no solution is 
better than the other one. As a result, both 

are valid models and will be considered 
for the next iteration. After checking the 

dominance condition for every possible 
pair of the models in the population, there 
will be some models that are not domi-

nated at all. These solutions are called 
dominant solutions, forming the Pareto 

front (Coello, 1999). In Fig. 2, the solu-

tions 1, 4 and 5 are in the Pareto front.  
    The next section (2-6) is fully covered 

in Zitzler et al. (2001). However, for a 
complete narration of the details applied 
in our code, there is a piece of concise 

information. 
 

 
Fig 2. Mapping of solutions (models) between 

spaces. In parameter space, each model has an 

array of depth values, whereas in solution space, 

each model is identified by two objective function 

values. The dominance concept is defined in the 

solution space. In a minimization problem (like 

the case we seek in this research), model No. 5 

dominates both model No. 2 and No. 3, while it 

cannot dominate models No. 1 and No. 4. Any 

possible models founded in area 1 would domi-

nate model No. 5.  

 

2-6    Strength Pareto concept 

To completely numerate the fitness of a 
solution and to represent how good a so-

lution is in comparison to other solutions, 
two factors are considered in the algo-
rithm. The first one is how many times a 

solution 𝒎𝒊 is dominated by other solu-

tions. It is defined as: 
𝑹(𝒎𝒊) =  ∑ 𝑺(𝒎𝒊)𝒋∈𝒑𝒐𝒑 +𝒂𝒓𝒄𝒉𝒊𝒗𝒆,   𝒋≫𝒊  (12) 

where 𝑺(𝒎𝒊) represents the number of 

solutions that model 𝒎𝒋 dominates in the 

solution space. The symbol ≫ is dom-
ination operation, so (𝒎𝒋 ≫ 𝒎𝒊) means 

model 𝒎𝒋 dominates model 𝒎𝒊. Finally, 

𝑹(𝒎𝒊) which is an integer number be-

tween [0 , ∞), is called raw fitness of so-

lution 𝒎𝒊 depicting the fact that how 
many times the model is dominated. 

Therefore, it can be easily understood 
that for a non-dominated solution, the 

raw fitness values is 𝑹(𝒎𝒊) = 0.  
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The second factor is a parameter that de-

scribes how far a solution is from other 
solutions. The density function for model 

𝒎𝒊 is defined as: 
(13) 

𝑫(𝒎𝒊) =  
1

𝝈𝒎𝒊
𝒌 +𝟐

; 𝑘 =  √𝑁𝑝𝑜𝑝 + 𝑁𝑎𝑟𝑐ℎ   

Here, 𝝈𝒊
𝒌  which is the k-th nearest neigh-

bor distance for model 𝒎𝒊, is computed 
by using the k-th nearest neighbor meth-

od (Silverman, 1986).  𝑁𝑝𝑜𝑝 is population 

size and 𝑁𝑎𝑟𝑐ℎ is archive size. We can see 

that the density function 𝑫(𝒎𝒊) has a 

value between 0 and 0.5. The value 0 cor-
responds to an almost isolated model in 

the solution space. It is important to note 
that dispersed models are essential to be 

saved for further investigation of solution 
space.  
     Summation of raw fitness and density 

functions forms total fitness of a model: 
𝑭(𝒎𝒊) =  𝑹(𝒎𝒊) +  𝑫(𝒎𝒊)               (14) 

Better solutions have lower total fitness 
value and will be added to archive. In 

case of which the population of archive 
became larger than a predefined maxi-
mum size, models with higher values of 

𝑭, would be removed. 

 
2-7    GA general operators 

New set of solutions is created by genetic 

operations. In genetic algorithm, models 
used for a new generation of solutions are 

called parents and newly generated mod-
els are the children. In this algorithm, 
arithmetic mutation and crossover were 

used for new model (child) generation. 
Arithmetic crossover operation requires 

two parents (models m1 and m2) to cre-
ate two children y1 and y2: 

𝑦1 =  𝛼. 𝒎𝟏 + (1 − 𝛼). 𝒎𝟐 

𝑦2 =  𝛼.𝒎𝟐 + (1 − 𝛼). 𝒎𝟏              (15) 

If 𝛼 = 1, then y1 = m1 and y2 = m2. Al-

so, if 𝛼 = 0, then y1 = m2 and y2 = m1. 
Thus, by assigning a value to 𝛼 from the 

range (0, 1), new models will inherit their 

values from either m1 or m2. Generally, 
a small value of 𝛿 is considered for crea-

tion of some random divergent models 

from the convex formation defined 

above. Depending on how large the 𝛿 
value is, these minor divergent answers 

will increase the exploitation or some-
times exploration efficiency of the algo-

rithm: 
𝛼 = 𝑟𝑎𝑛𝑑𝑜𝑚(−𝛿, 1 + 𝛿)                   (16) 

For a model m1, mutated solution is: 
𝒚𝟏 =  𝒎𝟏 + 𝛽                                    (17) 

where the parameter 𝛽 is a random per-

centage of maximum mutation step de-
fined by the operator: 

(18) 
𝜷 =
𝑟 ∗ (max 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 (𝑖𝑛 𝑚𝑒𝑡𝑒𝑟))    ; 
 𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚(−1,1)  

 

2-8    Parent selection tournaments  

The parent selection process for genetic 
operations is also important. Among the 

objective functions, the gravity data fit-
ness is more important than the regulari-

zation function. Considering this point, 
we used a binary tournament selection 
method (Miller and Goldberg, 1995) to 

find possible candidates in crossover op-
eration and a roulette wheel selection 

method (Blickle and Thiele, 1996) to find 
possible candidates for mutations. The 
binary tournament method uses the total 

fitness for parent selection, while the rou-
lette wheel method utilizes a probability 

distribution function pertaining to gravity 
objective function. Lower gravity RMSE 
values are more likely to be selected as 

parents. These selection modes lead the 
algorithm to better exploitation (since the 

mutation process takes place among the 
models with lower RMSE values) and a 
good exploration (by a random selection 

of fitter solutions and using them in 
crossover operation) of the solution 

space.  
 
2-9    Random local mutation 

It is important to consider that by using 
the multi-objective method, we increase 

the dimension of the solution space. We 
are not exploring and minimizing an ar-
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ray of gravity data, but a plane of gravity 

and depth data. On the other hand, the 
number of parameters in the problem is 

usually high, and the problem has non-
unique solutions. Thus, it does not seem 
to be efficient enough only using general 

genetic operations in the multi-objective 
algorithm, hence the need to add some 

features in genetic operations in order to 
increase the efficiency of the algorithm.  
In the each iteration, two mutation opera-

tions are applied in the algorithm. The 
first one is random local dual side dy-

namic mutation defined as following: 
𝒚𝟏(𝒊, 𝒋) =  𝒎(𝒊, 𝒋) + 𝛽𝑑𝑦𝑛  

𝒚𝟐(𝒊, 𝒋) =  𝒎(𝒊,𝒋) − 𝛽𝑑𝑦𝑛                  (19) 

The first noticeable point is that two chil-

dren are created. The term 𝒎(𝒊, 𝒋) means 
that the mutation process takes place only 

on a random range of depth parameters 
(from the point i to the point j) in model 

 𝒎. In addition, we use a dynamic value 
for mutation here, which decreases by a 

fixed rate during optimization process.  
 

2-10    Guided mutation  

Sometimes, after a large number of itera-
tions, being trapped into a local minimum 

very close to acceptable global optimal 
solutions, the algorithm will not show 

further progress. The first idea for cover-
ing such unwilling problems is to in-
crease the number of populations, but it is 

not efficient at all. On the other hand, in 
gravity problems, after applying Bouguer 
correction, the maximum gravity effect 

for every piece of an anomaly would take 
place right above the structure. We use 

this information as a guided mutation 
strategy in producing new solutions by 
considering mutation only in areas where 

a considerable data misfit is detected. 
This operation will exploit some already 

optimized answers.  
𝒚𝒈𝒖𝒊𝒅𝒆𝒅 (𝒊, 𝒋) =  𝒎(𝒊,𝒋) + 𝛽𝑑𝑦𝑛  ,

𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (𝒊 , 𝒋) 𝑤ℎ𝑒𝑟𝑒 |∆𝒈| >
𝑚𝑒𝑎𝑛(|∆𝒈|)                                       (20) 

After all, the solutions created in this sec-
tion will take part alongside archive solu-

tions in the next assessments of iteration.  

    The parameters crossover (𝛿) and mu-
tation (𝛽𝑑𝑦𝑛) in the genetic algorithm are 

the main variables controlling the trend 

of the algorithm. While being dimension-
less, these parameters are sensible as they 
are defined in the form of a percentage of 

the search space. Larger values for pa-
rameters 𝛿 and 𝛽𝑑𝑦𝑛 give rise to more 

diverse solutions and a better exploration, 
while smaller values for these parameters 

lead to more focused solutions and better 
exploitation. 

 
3    Evaluation 
3-1    Synthetic models 

A synthetic model for a sedimentary lay-
er with homogenous density contrast of -
600 kg/m3 is created (Fig. 3). Maximum 

depth of 8 km is considered for this mod-
el. Having almost 6 km change in layer 

depth in different locations, makes this 
model a suitable test case for efficiency 
of the algorithm. We tested the algorithm 

for this model with parameters recorded 
in Table 1. The RMSE value for the solu-

tions changes from 0.534 mGal for the 
best solution, to 16.854 mGal for the 
weakest model. Fig. 4 shows the Pareto-

front created by the algorithm and Fig. 5 
describes the error distribution of depth 

values from the synthetic model for 10 
models with lowest RMSE values. Fig. 6 
shows the result of algorithm for the syn-

thetic model. RMSE value for plotted 
model is 0.534 mGal.  

    To evaluate the stability of the algo-
rithm in presence of high level of noise, a 
heavy white Gaussian noise with maxi-

mum amplitude of 2.6 mGal and average 
amplitude of 0.89 mGal added to previ-

ous model. It is important to consider that 
such an extreme noise on a dataset is not 
practical, but it is implemented here to 

evaluate stability of the suggested meth-
od. Figs. 7 and 8 demonstrate two of the 

results of the algorithm in presence of 
heavy noise. These answers are chosen 
among one hundred possible solutions 
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suggested by the method. One of them 

(Fig. 7) has the lowest RMSE value for 
gravity data while the other (Fig. 8) has a 

suitable smoothness among the answers. 
All parameters are chosen according to 
the Table 1. Because of applying the 

smoothing term as a separate cost  
function in the algorithm, even in the 

presence of a high level of noise, stable 
solutions are acquired.  
    For more evaluation, we decided to 

add more details to the synthetic model 

by changing the geometry of the layer. 
Saving the previous amount of white 

noise in the gravity output, we added  
another local minimum to the geometry 
of layer. In addition, some harsh steeps 

are added to the layer to assess  
the steadiness of the method in presence 

of considerable sudden changes in  
depth values. The output is presented in 
Fig. 9. 

 

 
 

Fig 3. Substructure geometry and gravity effect of a synthetic layer on the ground. Due to a homogenous 

density contrast, the values of gravity field change with geometry of the layer. 

Table 1. Parameter values applied in inversion of synthetic data. 

 

Parameters Values 

Density contrast for layer -600 kg/m
3
 

Maximum depth for search space 10000 (meter) 

Minimum depth for search space 0 (meter) 

Population size 200 

Archive size 100 

Maximum iteration 200 

Percentage of mutated solutions  10% 

Percentage of crossed solutions  90% 

Crossover parameter (𝛿) 0.05 

Mutation parameter (𝛽) 0.05 

 
Fig 4. Pareto front for synthetic data modelling. The population of Pareto front is 100 so lutions (full archive). 

These models are the most non-dominated solutions found by algorithm. Their gravity RMSE varies from 0.5 

to 17 mGal. 
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Fig 5. Relative error distribution for 10 solutions with the lowest RMSE values. Generally, a Gaussian distri-

bution for errors is expected. The sharper is the bell shape distribution. The lower values are the errors. 

 

 
 

Fig 6. One of the solutions of the algorithm and its gravity effect. (a) Gravity effect of synthetic model (o b-

served) vs. gravity effect of algorithm model (calculated). (b) Green line is boundary of layer from the syn-

thetic model. The red line is the calculated depth.  

 
Fig 7. One of the suggested solutions for noisy data modelling. This solution has the lowest RMSE value 

among the answers. For all the solutions, RMSE values increased in comparison to previous model, but they 

are still acceptable and the model is valid. 

 

a) 

b) 

a) 

 

 

 

 

 

 

b) 
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Fig 8. Another solution for noisy data modelling. This solution lacks in favorable RMSE value, but it seems 

to have a suitable smoothness. For all the solutions, RMSE values increased in comparison to previous mo d-

el, but they are still acceptable and the model is valid. 

 

 
Fig 9. Synthetic model with sharper steeps and rugged structure. Although this model is more complicated 

but the RMSE value for gravity misfit is lower than previous model due to stochastic nature of search  

 method. 

 

3-2    Analysis on real data 

As a practical application of this algo-
rithm, the gravity data from Recôncavo 

basin in Brazil is considered for depth to 
basement calculations. Gravity anomaly 
in the area mainly occurs because of the 

basement relief in the area (Le˜ao et al., 
1996). Fig. 8 shows the Bouguer anomaly 

map of basin in northeast Brazil (Silva et 
al., 2006). A homogenous density con-
trast of 260 kg/m3 is considered for data  

 

modelling (Barbosa et al., 1997  

and 1999; Le˜ao et al., 1996; Silva  
et al., 2006). Silva et al. (2006) described 

the geology of the area and used the pro-

file A-A for further studies. We use the 

same profile (using digitized data) to 
compare our results with previous stud-
ies. Fig. 9 shows the inversion result and 

also previous studies. Fig. 10 illustrates 
the Pareto front created for solving this 

problem. 

 

a) 

 

 

 

 

 

 

b) 

a) 

 

 

 

 

 

 

b) 
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Fig 10. Bouguer map of Recôncavo basin (Brazil). Profile A-A' is considered for gravity modelling (modi-

fied after Silva et al. (2006)). 

 

 
Fig 11. Data modelling results for multi-objective method and previous studies. Upper diagram shows the 

data misfit between multi-objective solution and observed data. Lower diagram illustrates basement relief in 

A-A’ profile according to different methods. 

 
Fig 12. Pareto front for real data modelling in Recôncavo basin (Brazil). A good convergence for RMSE 

gravity is achieved on the upper left corner of the figure. 
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Table 2. Parameter values applied in inversion of real data. 

 

Parameters Values 

Density contrast  -260 kg/m
3
 

Minimum depth in search space 0 meter 

Maximum depth in search space 10000 

Population size 300 

Archive size 150 

Maximum iteration 400 

Percentage of mutated solutions  10% 

Percentage of crossed solutions  90% 

Crossover parameter (𝛿) 0.05 

Mutation parameter (𝛽) 0.05 

 
Table 3. Relative errors of depth values between multi-objective algorithm and other methods. 

 

Method Relative error  

Barbosa et al. (1997)  0.1351 

Barbosa et al. (1999)  0.1494 

Silva et al. (2006)  0.1159 

multi-objective method 0.12 

 

    Parameters used in this process are 

presented in Table 2. The final RMSE 
value in our data modelling method is 

0.12 mGal, which means that the algo-
rithm works properly. All previously 
suggested models are accepted due to dif-

ferent geological interpretations available 
for the area (Silva et al., 2006). Here, to 

exhibit the similarity between these mod-
els and the results of this method, mean 
absolute relative errors for depth values 

are calculated and the outputs are shown 
in Table 3. The model proposed by multi-

objective method is the most identical 
(lowest relative error) to the model pre-
sented by Silva et al. (2006). 

 

4    Conclusion 

To solve the gravity data inversion prob-
lem, a 2D gravity data modelling method 
based on a multi-objective algorithm is 

presented. The method does not need to 
directly deal with the inverse formula-

tions due to the implementation of the 
genetic algorithm as an iteratively for-
ward optimization technique. Further-

more, this method does not require a 
weighted regularization coefficient; thus, 

the time for finding a weighting matrix 
and parameter of the regularization term 

will be saved and will be spent on model 

searching instead. Moreover, as a global 
optimization method, it solves the inver-

sion problem without any specific initial 
model. All these improvements make this 
method a fast and considerably effective 

for the case of layer boundary determina-
tion. We specifically applied this method 

to determine a two-dimensional layer 
boundary. The efficiency and validity of 
this method are tested with a synthetic 

model. For further evaluation of the sta-
bility of this algorithm, noisy synthetic 

data is used and it is proved that this 
method shows a great convergence even 
in the presence of noise. All the results 

are demonstrated using different tables 
and diagrams. As a practical example of 

this method, a basement relief in Brazil 
was modelled. The results are in com-
plete conformity with previously done 

researches. 
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