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Abstract 

Fréchet derivatives calculation or sensitivity matrix is an integral part of every non-linear inversion 
process. The sensitivity values indicate the variation of the forward response with respect to the 
variation of model parameters. Sensitivity patterns are also a criterion to assess the reliability of 
inverted models and to design optimum resistivity surveys. In this study, a numerical approach 
based on the forward matrix calculation in the framework of the 2.5D finite difference electrical 
resistivity forward modeling is presented. First, using the potential distribution in the Fourier space 
obtained from the forward calculation and the derivatives of the coupling coefficients with respect 
to the conductivity distribution, the sensitivity values in the wavenumber domain are computed. 
Then, these values are transformed into the space domain using an inverse Fourier technique. To 
verify and analyze the proposed numerical method, the sensitivity distributions assuming the 
homogeneous and inhomogeneous media for commonly used electrical resistivity tomography 
configurations (e.g. pole-pole, pole-dipole, dipole-dipole, and the Wenner arrays) are computed. 
The numerical experiments reveal that the sensitivity patterns vary spatially throughout the model 
depending not only on the resistivity distribution but also on the electrode configuration. It is also 
concluded that the sensitivity analysis can be used as a supplementary tool for any optimum 
electrical tomography survey design.   
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1    Introduction 

The inversion of electrical resistivity 
tomography provides an image of the 

subsurface conductivity distribution in 
near-surface investigations. The inverse 
solution of resistivity data requires 

knowledge about the Fréchet derivatives 
(sensitivity values) constructing the 

elements of the Jacobian matrix of the 
objective function. These sensitivity 
values denote the change in electrical 

potential or apparent conductivity due to 
a change in subsurface conductivity or 

resistivity distribution. The greater the 
value of the sensitivity function, the 
higher the influence of the subsurface 

medium on the potential measured by the 
electrical array. In other words, through 

the comparison of the derivative values 
for the individual data with respect to all 
model parameters, it is possible to give a 

concept of how the physical properties 
can be distinguished from each other by 
the measured surface data. Thus, the 

sensitivity analysis provides the 
possibility of optimizing field survey 

design and computation of resolution 
matrices. The dimension of the sensitivity 
matrix depends upon the size of the 

discretized model (i.e., model space) and 
the number of the electrode 

displacements so that each element of the 
matrix contains only the neighboring 
conductivities of the corresponding cell. 

On the other hand, for each model cell, 
all current sources have to be considered 

leading to solving 𝑚𝒅 × 𝑛𝐦 (where 𝑚 is 
the number of data space and 𝑛 is the 

number of model space) single forward 

problem. Hence, from the point of view 
of computational cost, the major 
implementation of electrical resistivity 

inversion is the sensitivity calculation. 
The first attempts of the Fréchet 

derivatives calculation for resistivity 
modeling are in conjunction with 
inversion approaches. McGillivray and 

Oldenburg (1990) presented a 
comparison of three approaches for 

calculating the sensitivity matrix for a 2D 

and 3D earth. Spitzer (1998) described 
derivatives for various electrode arrays at 

the surface and subsurface (cross-hole 
measurements) on 3D models using 
analytic and numerical schemes. An 

implicit formulation was proposed by 
Park and Van (1991) for the isotropic 

Fréchet derivative in the 3D case. Loke 
and Barker (1995) developed a numerical 
method for the solution of the Fréchet 

derivative integral on a homogeneous 
half-space. Zhou and Greenhalgh (1999) 

suggested explicit expressions for the 
Fréchet derivatives in terms of the 
Green’s functions calculated with a finite 

element method for any cross-hole 
electrode array. Günther et al. (2006) 

used the reciprocity theorem by 
Geselowitz (1971) to numerically 
compute the sensitivity function. Szalai 

and Szarka (2008) dealt with sensitivity 
patterns in isotropic and homogeneous 
earth for some non-conventional arrays 

(non-linear arrays). 
    However, the above studies have been 

carried out based on the assumption that 
the subsurface structures have isotropic 
properties. Inclusion of the anisotropy 

properties results in further complexity of 
the inverse problem. Part of this 

complexity is that additional parameters 
must be included and solved during the 
inversion in what is often already an 

under-determined problem. Moreover, it 
is not always clear to specify the form of 

anisotropy in the starting model 
(Greenhalgh et al., 2009; Wiese et al., 
2009). Despite successful publications for 

the solution of the sensitivity function, it 
is still an interesting research area to 

investigate in detail. The main motivation 
behind this study, in addition to 
providing an accurate and fast calculation 

approach of the sensitivity function, is to 
further deal with sensitivity properties of 

the conventional geo-electrical 
arrangements from the computational and 
theoretical aspects. Thus, a numerical 

https://www.earthdoc.org/search?value1=Tim+Wiese&option1=author&noRedirect=true
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strategy based on the forward matrix 

method in the framework of a finite 
difference approach is presented. The 

novelty of this paper is based on the fact 
that a computationally time-consuming 
part of every electrical resistivity 

tomography inversion is the computation 
of the sensitivity matrix required to be 

recalculated at all iterations of the 
inversion process. Hence, to overcome 
this problem, the proposed method 

utilizes the results of the forward 
modeling computations already 

calculated to construct the elements of 
the sensitivity matrix. This strategy 
considerably reduces the computing time. 

The Fréchet derivatives of 2.5D 
homogeneous and inhomogeneous 

ground with respect to different electrical 
configurations are calculated. 
Furthermore, to reduce the computing 

time during the calculation of each 
element of the sensitivity matrix, some 
special tricks are taken, which will be 

dealt with in detail in later sections. The 
rest of the paper is organized as follows: 

Section 2 provides a detailed description 
of the numerical calculation of the 
sensitivity function. Section 3 presents 

the numerical results on three theoretical 
models for commonly used field arrays 

(e.g., pole-pole, pole-dipole, dipole-
dipole, and the Wenner array) as well as 
an interpretation of the sensitivity 

patterns of the corresponding 
configurations. Finally, section 4 gives a 

short conclusion and summary.  
 
2    Methodology 

In general, to determine the DC 
sensitivity in 2.5D and 3D models, there 

are three numerical schemes including 
the adjoint equation approach, 
perturbation method, forward matrix 

technique, and one analytic method. The 
numerical ones are applied to arbitrary 

resistivity structures (inhomogeneous 
ground) while the analytic one is 
basically used for homogeneous models. 

Note that due to the arbitrary selection of 

the perturbation value, the perturbation 
algorithm provides an approximation to 

the sensitivity function in a finite 
difference sense. Furthermore, the 
computation of the entire perturbation 

values results in many forward 
calculations, which are computationally 

costly. Among the numerical strategies, 
the adjoint equation and forward matrix 
method are commonly utilized for the 

solution of the sensitivity function. In this 
section, to compute sensitivity with 

respect to an arbitrary conductivity 
distribution in an isotropic medium, we 
focus on providing a formulation of the 

DC forward matrix method. The 
governing equation of the DC electrical 

potential due to a point current source in 
3D isotropic and inhomogeneous media 
is stated in terms of the partial differential 

equation as (Dey and Morrison, 1979; 
McGillivray and Oldenburg, 1990): 
𝛁 ∙ [𝜎(𝑥.𝑦. 𝑧)𝛁U(𝑥.𝑦. 𝑧)]

= −𝐼𝛿(𝑥 − 𝑥𝑠)𝛿(𝑦
− 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠) 

(1) 

where 𝐼 is the current intensity injected 

into the subsurface, 𝜎 stands for the 
arbitrary distribution of subsurface 

conductivity, 𝛿 is the Dirac delta 
function, 𝑈 is the potential distribution 

due to a point source. 𝑥𝑠, 𝑦𝑠, and 𝑧𝑠 

display the position of the surface source 
and 𝑥, 𝑦 and 𝑧 indicate the position of the 

model cell in the discretized work area. 

Taking into account the 2.5D modeling 
assumptions (i.e., 3D current source and 
2D resistivity variation), Eq. (1) 

becomes: 
𝛁 ∙ [𝜎(𝑥. 𝑧)𝛁U(𝑥. 𝑦. 𝑧)]

= −𝐼𝛿(𝑥 − 𝑥𝑠)𝛿(𝑦
− 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠) 

(2) 

To account for the 3D source 

characteristic, the three-dimensionality of 
the point source is transformed into 

wavenumber domain through a spatial 
Fourier transform of the partial 
differential equations along the strike 

direction. The corresponding 
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transformation of Eq. (2) yields (for more 

details see, e.g., McGillivray and 
Oldenburg,1990; Ghanati et al., 2020): 

        𝛁 ∙ [𝜎(𝑥. 𝑧)𝛁𝑈(𝑥.𝑘𝑦 . 𝑧)

− 𝑘𝑦
2𝜎(𝑥. 𝑧)𝛁𝑈(𝑥. 𝑘𝑦. 𝑧)]

= −
𝐼

2
𝛿(𝑥 − 𝑥𝑠)𝛿(𝑧 − 𝑧𝑠) 

(3) 

where Ũ denotes the transformed 

potential and 𝑘𝑦 is the wavenumber with 

respect to the 𝑦 direction. Considering a 

mixed-boundary condition (Dey and 
Morrison, 1979), the partial differential 

equation (Eq. 3) is solved by the method 
of finite difference (i.e., the central 

difference approximation for the partial 
derivatives). Hence, the numerical 
solution of the differential equations 

results in the system of algebraic 
equations as: 

𝑪𝒖̃(𝑥, 𝑘𝑦 , 𝑧) = 𝒒    (4) 

where 𝑪 is the coupling matrix affected 

by the subsurface conductivity 
distribution and discretization properties 

and 𝒒 stands for the vector of source with 
the property of a discrete delta Dirac 

function. Note that the solution of the 
above symmetric and positive definite set 

of linear equations will give the 
transformed potential 𝒖̃(𝑥,𝑘𝑦 , 𝑧) for 

specified values of 𝑘. In order to derive 
the potential in the spatial domain 

(𝒖(𝑥,𝑧)), the inverse Fourier transform 

should be applied. Since the pattern of 
the derivatives of the transformed 
potential (𝒖̃) is somewhat irregular, that 

is, the derivative of the transformed 

potential for the first wavenumber can 
sometimes be slightly smaller than the 
derivative of the transformed potential for 

the second wavenumber, it is not possible 
to use the exponential approximation for 

a piecewise integration in all intervals. 
Instead, a shape-preserving piecewise 
cubic interpolation algorithm is applied to 

approximate the integration between the 
smallest and largest wavenumbers. We 

refer to Ghanati et al. (2020) for the 
basics and mathematical background of 
2.5D DC resistivity forward calculations.  

To obtain the sensitivity quantities, it is 

required to differentiate Eq. (4) with 
respect to the n-th conductivity 𝜎𝑛 which 

yields (the source term is independent of 

𝜎𝑛, then 
𝜕𝒒

𝜕𝜎𝑛
= 0): 

𝜕𝑪

𝜕𝜎𝑛

𝒖̃(𝑥, 𝑘𝑦 , 𝑧) + 𝑪
𝜕𝒖̃(𝑥,𝑘𝑦 , 𝑧)

𝜕𝜎𝑛

= 0 

(5) 

For simplicity  
𝑪′𝒖̃(𝑥, 𝑘𝑦 , 𝑧) + 𝑪𝒖̃′(𝑥, 𝑘𝑦 , 𝑧) = 0 (6) 

From the above equation, with the 
assumption that the matrix 𝑪′ is known 

and 𝑪 and 𝒖̃(𝑥,𝑘𝑦 , 𝑧) are computed from 

the forward calculations, the objective is 

to determine 𝒖̃′(𝑥,𝑘𝑦 , 𝑧) on every 

wavenumber in the Fourier space. It is 
also noticed that by considering the 
vector 𝑪′𝒖̃(𝑥, 𝑘𝑦 , 𝑧) instead of the current 

vector 𝒒, Eq. (6) is similar to Eq. (4).  

    Regarding the definition of the 
sensitivity matrix and Eq. (6), the 

derivative of the measured potential with 
respect to each model cell for different 
wavenumbers should be calculated. In 

addition, the capacitance matrix 𝐶 
consists of the coupling coefficients for 

all cells. However, only a number of the 
coupling coefficients (i.e., four elements) 

depend on the model cell (Appendix 1). 
At each of these cells, there are 3 
elements that are dependent on the 

cording model cell. Hence, the matrix 𝐶 ′ 

with the size of 𝑛 × 𝑛 having only twelve 
non-zero elements is constructed for each 

model parameter (Appendix 2). More 
details are given in Appendix 1. As a 

result, by using Eq. (6), the vector 𝑢̃′ 
with the size of 𝑛 × 1 for different 

wavenumbers is obtained. After deriving 
every wavenumber, an inverse Fourier 

transform is required to convert 
𝒖̃′(𝑥, 𝑘𝑦 , 𝑧) in Fourier space to 𝒖′(𝑥,𝑧) 

in spatial space. This process is repeated 
for the entire model parameters (cell 

conductivities) giving one row of the 
sensitivity matrix. To complete all rows 

of the sensitivity matrix, the above 
process is implemented for each 
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measured voltage which totally results in 

𝑚 × 𝑛 single forward calculations. It is 
noticed that the numerical effort to 

construct the sensitivity matrix can be 
considerable, in particular, when there are 

a large number of model parameters. To 
significantly reduce the computational 
time, it only needs to solve Eq. (6) with a 

specified number of rows and columns of 
𝑪 and 𝑪′. Since the matrix 𝑪′ is only a 

function of the geometry of the grid, the 
process of its computation is 

implemented only once for the different 
source locations. It is also noteworthy 

that during the inversion of resistivity 
data, it is required to simultaneously 
carry out the forward calculations and 

sensitivity matrix construction at the 
same code. The proposed numerical 

method is summarized in Algorithm 1.  
 

Algorithm 1. Different steps of the 

sensitivity matrix construction 
Step 1. Compute 𝑪′(refer to Appendix 1)  

Step 2. Calculate 𝑪 using the 

discretization properties and conductivity 
distribution 

Step 3. for 𝑖 = 1 to 𝑚 (𝑚 is number of 
the model parameters) 

Step 4. for 𝑘𝑦 = 1 to 𝑝 (𝑝 is number of 

wavenumbers) 

Compute 𝒖̃ using the forward modeling 
Calculate 𝒖̃′ = −𝑪−1𝑪′𝒖̃ 

End for 

Step 5. Implement the inverse Fourier 
transform to obtain 𝒖′ 

Step 6. Extract the first row of 𝒖′ to 

calculate the potential difference 
corresponding to the location of the 
potential electrodes 

End for  
Step 7. Go to step 3 to repeat the process 

for all the source locations (The 
numerical results presented in this study 
are based on the derivative of only one 

measured potential (or source location) 
with respect to the entire model cells, that 

is, construction of merely one row of the 
sensitivity matrix). 

    It should be also noted that if step 8 is 

carried, to convert 𝒖′ =
𝜕𝒖

𝜕𝜎
 into 

𝜕𝜌𝑎

𝜕𝜌
, 

which is used in the inversion process as 
the Jacobian matrix, it is required to 

multiply 𝒖′ by the factor 
𝐾

𝐼
× (−𝜎2), 

where 𝐾, 𝐼 and 𝜎 are the geometry factor, 
current intensity, and conductivity, 

respectively (for more details see 
Appendix 1). 

 
3    Numerical experiments 

In this section, the sensitivity patterns of 

one homogeneous model and two 
inhomogeneous models, including a 

three-layered earth and a rectangular 
body buried in a high resistive half-space 
medium, with respect to different 

electrical arrays, e.g. pole-pole, pole-
dipole, dipole-dipole and the Wenner 

arrays are presented. We used the same 
gridding and forward calculations for all 
models and electrode arrays, with a grid 

size equal to the minimum electrode 
distance in the x-direction. The grid 

model contains 20 × 78 regular cells 
(rectangular blocks) in vertical and 

horizontal directions, respectively. This 
number of cells also includes the 

boundary conditions (i.e., cells 
corresponding to both left and right sides 
and surface and bottom boundaries). Note 

that the discretized model is divided into 
two regions: work area or area of interest 

with a much finer grid to ensure accurate 
results and extended area with a coarse 
grid. 

i) Homogeneous half-space model  
Fig. 2 shows the sensitivity pattern of a 

homogeneous half-space model of 50 Ω𝑚 
represented in Fig. 1-a for different 

configurations. The maximum depth of 
investigation associated with pole-pole, 

pole-dipole, dipole-dipole, and the 
Wenner arrays are computed based on 
Edwards (1977). From the numerical 

results, it is noticed that for all the 
configurations, the highest sensitivity 

values are found near both the potential 
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and current electrodes. At larger 

distances from the electrodes, the contour 
patterns are different for different arrays. 

The difference in the contour pattern of 
the sensitivity function plot helps to 
explain the response of the different 

arrays to different types of structures. In 
addition, the effective depth of 

measurement is sequentially increased by 
increasing the distance between the 
receiving electrodes and the transmitting 

electrodes. The farther is distance, the 
greater is the vertical interval in which 

the bulk of the current flows. One 
important observation can be made when 
considering the sensitivity sections, that 

is, the negative sensitivity between the 

source electrode and receiving electrode 

and positive sensitivity between the 
source and potential electrode pairs.  

    Fig. 2-a indicates the sensitivity plot 
corresponding to the pole-pole array. 
Comparing the sensitivity patterns, it is 

observed that this array has the widest 
horizontal coverage and the deepest depth 

of investigation. However, it has the 
poorest resolution, which is reflected by 
the comparatively large spacing between 

the contours in the sensitivity function 
plot. The asymmetrical nature of the 

pole-dipole array is evident in the 
sensitivity section which is due to a 
remote current electrode (see Fig. 2-b). 

From    the   sensitivity    function,   it   is  
 

 

 
Fig 1. Representation of the simulated structures (a) homogeneous half-space model (b) three-layered model 

(c) rectangular body model. 
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Fig 2. Normalized sensitivity patterns associated with a homogeneous half-space of 100 Ω𝑚 for (a) pole-pole 

(b) pole-dipole (c) dipole-dipole (d) the Wenner arrangement with electrode spacing of 5 m and 𝑛 = 3 (𝑛 is 

the number of receiver-transmitter separation). The blue and red arrows represent the location of current and 

potential electrodes .  

 
obvious that analogous to dipole-dipole, 

this array has almost vertical contours, 
but a larger depth of investigation 
compared to the dipole-dipole array. For 

the pole-dipole array with large receiver-
transmitter separation, the region with the 

highest positive sensitivity values 
concentrates below the potential 
electrode pair. Referring to Fig. 2-c, the 

dipole-dipole array has almost vertical 
contours beneath the center of the array 

meaning that the dipole-dipole 
configuration is more sensitive to vertical 
structures than to horizontal structures. 

Contrary to the dipole-dipole array, the 
sensitivity pattern of the Wenner array is 

almost horizontal leading to better 
detection of horizontal anomalies, but 
poor recognition of vertical anomalies 

(see Fig. 2-d). 
ii) Three-layered model 

To deal with the influence of 
inhomogeneity on the sensitivity pattern, 
an inhomogeneous structure including a 

three-layered earth (𝜌1 = 100, 𝜌2 = 10, 

𝜌3 = 100) represented in Fig. 1-b is 
considered. The numerical results are 

shown in Fig. 3, which indicates the 
sensitivity patterns for a fixed 

transmitter/source combination in terms 

of different electrical configurations. 
From this figure, it can be seen that the 
presence of inhomogeneity in the 

medium introduces the asymmetry into 
the sensitivity pattern. Furthermore, the 

Wenner array shows better vertical 
resolution, which confirms its superiority 
over the other arrays for detection of the 

layered structures. It is also seen that the 
dipole-dipole and pole-dipole arrays 

show less sensitivity to the layered earth 
model due to the poor vertical resolution 
of the dipole package (i.e. pole-dipole 

and dipole-dipole). 
iii) Rectangular body model 

The second inhomogeneous example 
includes one embedded block with the 
resistivity of 10 Ω𝑚 buried in 100 Ω𝑚 

half-space at 1.2 m from the ground 

surface (Fig. 1-c). The object of this 
example is to investigate the sensitivity 
function of different arrays with respect 

to vertical structures. From Fig. 4, it is 
observed that the sensitivity pattern 

illustrates large negative values near the 
surface between 𝐶1 and 𝑃1 electrodes, as 

well as between 𝐶2 and 𝑃2 electrodes. 
This means that if a small body with a 
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higher resistivity than the background 

medium is placed in these negative zones, 
the measured apparent resistivity value 

will decrease. On the contrary, if the high 
resistivity body is placed between 𝑃1 and 

𝑃2 electrodes, where there are large 
positive sensitivity values, the measured 

apparent resistivity will increase. It is 
also concluded that the presence of 

inhomogeneity causes the distortion of 

the sensitivity pattern compared to a 
homogeneous medium. In addition, our 

numerical experiments demonstrate that 
the dipole-dipole and pole-dipole 
configurations have almost vertical 

contours indicating its higher sensitivity 
to vertical structures than to horizontal 

structures.   
 

 
Fig 3. Normalized sensitivity patterns associated with a three-layered model (𝜌1 = 100 Ω𝑚, 𝜌2 = 10 Ω𝑚, 

𝜌3 = 100  Ω𝑚) for (a) pole-pole (b) pole-dipole (c) dipole-dipole (d) the Wenner arrangement with electrode 

spacing of 5 m and 𝑛 = 3 (𝑛 is the number of receiver-transmitter separation). The blue and red arrows 

represent the location of current and potential electrodes.  

 
Fig 4. Normalized sensitivity patterns associated with a rectangular body model (

𝜌𝑏𝑜𝑑𝑦

𝜌𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
= 0.1) for (a) 

pole-pole (b) pole-dipole (c) dipole-dipole (d) the Wenner arrangement with electrode spacing of 5 m and 

𝑛 = 3 (𝑛 is the number of receiver-transmitter separation). The blue and red arrows represent the location of 

current and potential electrodes.  
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Fig 5. The model cell 𝜎𝑛  and twelve coupling coefficients depending on 𝜎𝑛 . 𝑃, 𝐵, 𝑅, and 𝐿 stand for the 

central, bottom, right and left nodes, respectively. 

 
4    Conclusions and Remarks 

An accurate and fast sensitivity 

calculation technique is the basis of any 
efficient electrical resistivity tomography 

inversion. Therefore, we proposed and 
formulated a numerical method using the 
element stiffness matrices and the 

potential distribution obtained from the 
finite difference modeling to calculate the 

sensitivity matrix values. The sensitivity 
distribution was computed for 2.5D 
electrical resistivity modeling in terms of 

different surface electrical configurations. 
The sensitivity function determines the 

degree to which a change in the 
conductivity of a section of the 
subsurface will influence the potential 

measured by an electrical array. To verify 
the proposed numerical algorithm, the 

sensitivity patterns of one homogeneous 
and two inhomogeneous models were 
provided. In general, using the numerical 

experiments, it was demonstrated that the 
difference in the contour pattern of the 

sensitivity function plot helps to explain 
the response of different arrays to 
different types of structures and to 

determine the relative merits (e.g., 
resolution and penetration depth) of using 

some of the configurations for resistivity 
imaging. From our numerical 
experiments, it was shown that: 1) the 

pole-pole array has the maximum 
penetration depth but the lowest 

horizontal and vertical resolution; 2) 
contrary to the pole-dipole and dipole-

dipole configurations, the Wenner array 
is more sensitive to vertical changes than 

to horizontal changes, that is, the 
horizontal structures would be better 

detected by the Wenner array; 3) 
deformation of the sensitivity 
distributions is inevitable in the presence 

of inhomogeneity. Using the numerical 
strategy proposed in this study, the 

sensitivity function associated with any 
arbitrarily inhomogeneous cases can be 
calculated with the aim of resolution 

studies, experimental design of a survey 
and updating of model parameters during 

an inversion.  
 

Acknowledgements 

The authors are grateful to anonymous 
reviewers for their constructive and 

fruitful comments, which helped to 
significantly improve the clarity of this 
paper. We also thank the University of 

Tehran for all its support.  
 

References 

Dey, A., and Morrison, H. F., 1979, 
Resistivity modelling for arbitrarily 

shaped two-dimensional structures: 
Geophysical Prospecting, 27(1), 106-

136. 
Edwards L. S., 1977, A modified 

pseudosection for resistivity and IP. 

Geophysics, 42, 1020–1036. 
Geselowitz, D. B., 1971, An application 

of electrocardiographic lead theory to 
impedance plethysmography: IEEE 



162                                                                                   Ghanati et al.   Iranian Journal of Geophysics, Vol 15 NO 4, 2022 

Transactions on Biomedical 

Engineering, 18(1), 38–41. 
Ghanati, R., Azadi, Y., and Fakhimi, R., 

2020, RESIP2DMODE: A MATLAB-
based 2D resistivity and induced 
polarization forward modeling 

software: Iranian Journal of 
Geophysics, 13(4), 60-78.  

Greenhalgh, S. A., Zhou, B., Greenhalgh, 
M., Marescot, L., and Wiese, T., 2009, 
Explicit expressions for the Fréchet 

derivatives in 3D anisotropic 
resistivity inversion: Geophysics, 74, 

F31-F43. 
Günther, T., Rücker, C., and Spitzer, K., 

2006., Three-dimensional modelling 

and inversion of DC resistivity data 
incorporating topography – II, 

Inversion: Geophys. J. I., 166, 506–
517. 

Loke, M. H., and Barker, R. D., 1995, 

Least-squares deconvolution of 
apparent resistivity pseudosections: 
Geophysics, 60, 1682–1690. 

McGillivray, P. R., and Oldenburg, D. 
W., 1990, Methods for calculating 

Fréchet derivatives and sensitivities 
for the non-linear inverse problem: a 
comparative study: Geophysical 

Prospecting, 38(5), 499–524. 
Park, S. K., and Van, G. P., 1991, 

Inversion of pole-pole data for 3-d 
resistivity structure beneath arrays of 
electrodes: Geophysics, 56, 951–960. 

Spitzer, K. 1998, The three-dimensional 
DC sensitivity for surface and 

subsurface sources: Geophys. J. I., 
134(3), 736–746. 

Szalai, S., and Szarka, L., 2008, 

Parameter sensitivity maps of surface 
geo-electric arrays I. Linear arrays: 

Acta Geodaetica et Geophysica, 43, 
419–437. 

Wiese, T., Greenhalgh, S., and Marescot, 

L., 2009, DC resistivity sensitivity 
patterns for tilted transversely 

isotropic media: Near Surface 
Geophysics, 7(2), 125–139. 

Zhou, B., and Greenhalgh, S. A., 1999, 

Explicit expressions and numerical 

computation of the Fréchet and second 
derivatives in 2.5D Helmholtz 

equation inversion: Geophysical 
Prospecting, 47, 443–468. 

 

Appendix 1 

As stated in section 3, a part of the 

equation of the sensitivity function is the 
derivative of the coupling matrix 𝑪 with 

respect to 𝜎𝑛, where 𝑛 is the number of 

model parameters (model cells), i.e., 
𝜕𝑪

𝜕𝜎𝑛
. 

The matrix 
𝜕𝑪

𝜕𝜎𝑛
 with twelve non-zero 

elements has the size of 𝑛𝑧 × 𝑛𝑥 × 𝑛𝑧 ×
𝑛𝑥 , where 𝑛𝑧 and 𝑛𝑥  are the number of 

model cells in the 𝑧 and 𝑥 directions, 
respectively. Fig. 5 shows the elements of 

𝑪 which are dependent on 𝜎𝑛. For more 
details of the structure of the coupling 

matrix, the reader is referred to Dey and 
Morrison (1979). Furthermore, an open-

source Matlab code has been provided by 
Ghanati et al. (2020) in which the matrix 
𝑪 is constructed by a Matlab script 

named ‘Potantialinitial.m’. 

In addition, based on the cells and 
coupling coefficients affected by a 
change in the model cell 𝜎𝑛, the matrix 

𝑪′ is:  

𝜕𝑪

𝜕𝜎𝑛

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 … 0 0
0 ⋱ ⋰ 0

𝜕𝑪𝑃

𝜕𝜎𝑛

𝜕𝑪𝐵

𝜕𝜎𝑛

𝜕𝑪𝑅

𝜕𝜎𝑛

0

𝜕𝑪𝑇

𝜕𝜎𝑛

𝜕𝑪𝑃

𝜕𝜎𝑛

0
𝜕𝑪𝑅

𝜕𝜎𝑛

⋮ ⋱ ⋮
𝜕𝑪𝑃

𝜕𝜎𝑛

𝜕𝑪𝐵

𝜕𝜎𝑛

𝜕𝑪𝐿

𝜕𝜎𝑛

0
𝜕𝑪𝑇

𝜕𝜎𝑛

𝜕𝑪𝑃

𝜕𝜎𝑛

0 ⋰ 0
𝜕𝑪𝐿

𝜕𝜎𝑛

⋱ 0

0 0 … 0 0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Appendix 2 

This appendix explains how to calculate 
𝜕𝜌𝑎

𝜕𝜌
 from 

𝜕𝒖

𝜕𝜎
. 

First, we calculate 
𝜕𝜌𝑎

𝜕𝜎
=

𝜕𝒖

𝜕𝜎
×

𝐾

𝐼
 

(analogous to 𝜌𝑎 = 𝑢 ×
𝐾

𝐼
). 

https://link.springer.com/journal/40328
https://www.earthdoc.org/search?value1=Tim+Wiese&option1=author&noRedirect=true
https://www.earthdoc.org/search?value1=Stewart+Greenhalgh&option1=author&noRedirect=true
https://www.earthdoc.org/search?value1=Laurent+Marescot&option1=author&noRedirect=true
https://www.earthdoc.org/content/journals/nsg
https://www.earthdoc.org/content/journals/nsg
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Then using the chain rule, we have: 
𝜕𝜌𝑎

𝜕𝜎
=

𝜕𝜌𝑎

𝜕𝜌
×

𝜕𝜌

𝜕𝜎
=

𝜕𝜌𝑎

𝜕𝜌
× (−𝜌2)   

𝜕𝜌𝑎

𝜕𝜌
=

𝜕𝜌𝑎

𝜕𝜎
× (−𝜎2) =

𝜕𝑢

𝜕𝜎
×

𝐾

𝐼
× (−𝜎2) 

where 𝜌𝑎 is the apparent resistivity. 𝜌 

indicates the true resistivity and 𝑢 stands 

for the electrical potential distribution. 𝐾, 

𝐼 and 𝜎 are the geometry factor, current 

intensity and conductivity, respectively.  

 


