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Abstract 
Multi-model projections in climate studies are performed to quantify and narrow uncertainty 
and improve reliability in climate projections. The challenging issue is that there is no unique 
way to obtain performance metrics, nor is there any consensus about which method would 
be exactly the best method for combining models. The goal of this study was to investigate 
whether combining climate model projections using an artificial neural network approach 
could improve climate projections and therefore reduce the range of uncertainty. The 
equally-weighted model averaging (the mean model) and single climate model projections 
(the best model) were also considered as a reference of comparison for our artificial neural 
network combination approach. Simulations of historical climate and future projections from 
15 General Circulation Models for temperature and precipitation were employed.Our results 
indicate that based on calculated performance indices combining General Circulation  
Models projections by using the artificial neural network approach significantly improves 
the simulations of temperature and precipitation for the historical period compared to the 
best model approach and the mean model approach. Our results also indicate that based on 
the calculated performance indices for the three approaches, projections based on single 
model simulation might not yield reliable results because the best model changed between 
temperature and precipitation, and also among stations that were studied. Therefore, there 
was no a unique model which could represent the best model for all climate variables and/or 
stations in the study region. The mean model was also not skillful enough in giving an  
accurate projection of historical climate compared to the other two approaches. Therefore, 
the ANN approach was used to estimate projections of future temperature and precipitation 
for the study region based on three different emission scenarios.Simulation of temperature 
indicated that the artificial neural network approach had the best skill at simulating monthly 
means of the historical period compared to other approaches in all stations. Simulation of 
precipitation in the historical period, however, indicated that the artificial neural network 
approach was not the best approach in all stations, although this modeling approach  
performed better than the mean model approach. Multi-model projections of future climate 
variables for this study region performed by the artificial neural network approach projected 
an increase in temperature and reduction in precipitation in all stations and for all scenarios. 
    The artificial neural network approach can benefit projections of the climate variables and 
has the potential to reduce the uncertainty aspects in constructing and combining metrics 
used for weighting the models. However, this approach is subject to some limitations which 
exist in similar skill-based performance studies of models and should be considered in future 
similar studies. 
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1    Introduction 
General Circulation Models (GCMs) are 
considered important tools for simulating 
future global climate. These models can 
simulate different components of the 
Earth system, such as the atmosphere and 
oceans. However, due to their coarse res-
olution, projections of these models have 
low confidence and high uncertainty. Fur-
thermore, using the output of a single 
GCM in climate change projections does 
not yield realistic projections of future cli-
mate conditions. Intercomparison studies 
of GCMs indicate that each climate model 
has different skills in simulating certain 
aspects of the climate system mechanisms 
(Gleckler et al., 2008; Lambert and Boer, 
2001). This means that climate variables 
are simulated with different degrees of ac-
curacy by different models, and no single 
model delivers the best simulation for all 
variables and/or all regions. Therefore, in 
order to quantify the range of uncertainty 
in climate change projections, Intergov-
ernmental Panel on Climate Change 
(IPCC) recommends using multiple 
GCMs in climate simulations (Parry et al., 
2007). 
    Uncertainty in climate projections usu-
ally arises from three main sources: inter-
nal variability of the climate system, 
which stems from natural fluctuations of 
the climate without considering the effect 
of radiative forcing of the planet; emission 
scenarios, that stem from uncertainties in 
estimating future emissions of aerosols 
and greenhouse gases; and model errors, 
that stems from model formulations and 
structural uncertainties (Little et al., 
2015). The domination of the three 
sources of uncertainty in climate change 
projections varies with spatial and tem-
poral scales (Cox and Stephenson, 2007; 
Räisänen, 2001). For projections in the 
range of a decade or two, the dominant 
sources of uncertainty are model uncer-
tainty and internal variability. In projec-
tions of longer time scales, such as climate 
change conditions until the end of the 21st 

century, model uncertainty and scenario 
uncertainty become the dominant sources 
(Frölicher et al., 2016; Giorgi, 2010). 
Hawkins and Sutton (2009) showed that 
the importance of internal variability 
would increase at smaller spatial scales, 
and it was generally the dominant source 
in short-time scale projections. Their 
study also indicated that the importance of 
internal variability would decline when 
the projection time increased. Moreover, 
scenario uncertainty made an important 
contribution to many regions of the world 
at the end of the 21st century. Based on 
their study, model uncertainty had an im-
portant role in both global and regional 
scales and made a significant contribution 
to all time scales. 
    Model uncertainty plays an important 
role in studying the climate change condi-
tions for the next century. In order to ad-
dress model uncertainty in climate change 
simulations, a multi-model combination 
has been adopted as a well-accepted ap-
proach which generally increases the reli-
ability of model forecasts (Weigel et al., 
2010). However, so far, no consensus has 
been reached about which method would 
be the best method of combining the out-
puts of several climate models. Generally, 
in climate change multi-model studies, a 
common practice is to use the concept of 
weighting the outputs of climate models 
(Tebaldi and Knutti, 2007). The ap-
proaches fall into two general categories 
of equal weighting and skill-based 
weighting. Equal weighting is the easiest 
approach, in which every model is given 
equal weight regardless of its magnitude 
of contribution to the combination. Skill-
based weighting is a more sophisticated 
approach. In this approach, every individ-
ual model is given a different weight 
based on its contribution to projections. 
The weights are calculated based on the 
skill of every individual model in simulat-
ing the historical climate conditions and 
therefore are considered as skill-based 
weights. A study by Giorgi and Mearns 
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(2002) proposed the “Reliability Ensem-
ble Averaging” (REA) approach to weight 
different models based on their contribu-
tions to historical climate simulations. 
They defined two reliability criteria in 
multi-model studies to evaluate the skills 
of GCMs in simulating climate variables 
in the present and future climates: “model 
performance” that indicated how well the 
models can simulate the baseline (histori-
cal) climate, and “model convergence” 
that investigated the convergence between 
the simulations of future climate across 
models. The underlying philosophy of the 
REA approach in a multi-model projec-
tion is to detect models with weak perfor-
mance in simulating historical climate (the 
outliers) and to reduce their role in projec-
tions by assigning them less weight than 
models with small bias and good perfor-
mance. However, it has been argued that 
because common weaknesses in the repre-
sentation of certain climate processes may 
exist among a majority of models, outliers 
may not appear at random. Therefore, con-
sidering and analyzing a subset of models 
as the best guess, whose agreement is con-
sidered as their individual tendencies, may 
result in disregarding the possible range of 
uncertainty in the convergence criterion. 
Multi-model combination based on model 
weighting has been the focus of multiple 
studies (Arzhanov et al., 2012; Christen-
sen et al., 2010; Gleckler et al., 2008; 
Knutti et al., 2010; Lambert and Boer, 
2001; Min and Hense, 2006; Tebaldi et al., 
2005; Weigel et al., 2010). A study by 
Lambert and Boer (2001) indicated that no 
one model is best for all variables and/or 
all regions, and different variables are 
simulated with different levels of success 
by different models. They also concluded 
that the equally-weighted average or the 
“mean model” usually provides the best 
comparison to observations than the single 
models. A similar study was conducted by 
Gleckler et al. (2008) which emphasized 
the results of Lambert and Boer (2001). 
They ranked models based on simulating 

each variable that was considered in their 
study and concluded that the ranking of 
models varied from one variable to the 
other one. They also considered the mean 
model in their study and demonstrated that 
the mean model would outperform all sin-
gle models in nearly every aspect. In a 
multi-model study based on model 
weighting, Weigel et al. (2010) suggested 
that equally weighted multi-model, on av-
erage, would outperform single-model 
projections. They also considered the 
weighting of models and demonstrated 
that if the optimum weighting of the mod-
els were accurately performed, projection 
errors would be reduced in simulations. 
On the other hand, if inappropriate 
weights were assigned, which did not rep-
resent the skill of the model, the weighted 
multi-model would perform on average 
worse than equally weighted models, and 
therefore more information would be lost 
than was supposed to be obtained from 
simulations. The task of assigning weights 
to models is performed by defining some 
metrics to quantify model performance. 
The difficulty in this procedure is that 
there is no unique way to obtain metrics, 
nor is there any consensus about which 
method would be the best method for 
combining models. This difficulty is high-
lighted by the fact that the choice of the 
metrics to weight models is a pragmatic 
and subjective task that may incorporate 
more uncertainty into projections (Chris-
tensen et al., 2010; Tebaldi and Knutti, 
2007). 
    In this study, we investigate an alterna-
tive modeling approach to combine multi-
ple climate change projections. We com-
bined the outputs of several GCMs with an 
artificial neural network (ANN) model to 
obtain a multi-model combination. The 
purpose of the suggested approach is to in-
vestigate how much the combination of 
GCM projections by using our ANN ap-
proach would improve multi-model pro-
jections and, therefore, could reduce the 
uncertainty by obtaining an optimal model 
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combination. In order to assess the results, 
projections from two common ap-
proaches, namely single climate models 
(the best model) and equal weighting of 
the models (the mean model), were com-
pared with this approach. The ANN ap-
proach derives an optimal combination of 
multiple climate models by correlating the 
GCM simulations at the grid-scale to ob-
servations of climate variables at the local 
scale. This procedure can benefit climate 
projections because it reduces the subjec-
tivity and complexity aspects in construct-
ing and combining metrics used for 
weighting the models. 
    Climate change is projected to impact 
each component of the climate system 
with regional differences (Mejia et al., 
2018; Mosadegh et al., 2018; Mosadegh 
and Nolin, 2020). A few studies have ad-
dressed the uncertainty of climate projec-
tions over the 21st century for the Tehran 
region (Mosadegh et al., 2013; Mosadegh 
and Babaeian, 2021a) and have investi-
gated to what extent the projected changes 
in climate variables can affect other as-
pects of our environment such as air pol-
lution (Mosadegh et al., 2021; Mosadegh 
and Babaeian, 2021b). In order to investi-
gate the skill of the suggested ANN ap-
proach, we simulated temperature and pre-
cipitation for the study region. Moreover, 
we used the ANN approach to obtain a 
multi-model projection of temperature and 
precipitation for the future climate change 
conditions of the study region to the end 
of the 21st century. In this projection, the 
focus was mainly on the projection aspect 
rather than the model convergence crite-
rion, and also to know to what extent this 

approach can reduce the uncertainty in 
projections. We also took two sources of 
uncertainty into consideration: model un-
certainty and scenario uncertainty. Inter-
nal climate variability is often considered 
negligible on long time scales (Hawkins 
and Sutton, 2009). 
    This paper is structured as follows: 
Data, models, and scenarios used in the 
present study are described in section 2. 
The employed methodology is presented 
in section 3. The results are discussed in 
section 4, and conclusions are provided in 
section 5. 
 
2    Data, models, and scenarios 
2.1   Data 
Observation datasets from four synoptic 
stations in Tehran and Alborz provinces 
were used in this study. In each station, 
available long-term observations of 
monthly surface temperature and precipi-
tation until 2000 were used as the baseline 
period. For training the ANN, long-term 
observation datasets were necessary. 
Therefore, the baseline period for each 
station was selected based on the availa-
bility of observed data until the year 2000. 
Monthly surface temperature datasets for 
every station were obtained from daily ob-
served values in each station. The precipi-
tation datasets were obtained from daily 
observed values in each station and then 
were summed to get the total monthly pre-
cipitation in each station. The information 
on stations is given in Table 1. In the pre-
sent study, calculations for handling large 
datasets and obtaining the indices were 
programmed in MATLAB. 

 
Table 1. Information of station used in the present study. 

 

Station Latitude Longitude Elevation (m) Baseline 

Karaj 35  55  N 50  54  E 1312.5 1985-2000 

Mehrabad 35  41  N  51  19  E 1190.8 1960-2000 

Doshan Tappeh 35  42  N 51  20  E 1209.2 1972-2000 

Abali 35  45  N 51  53  E 2465.2 1983-2000  
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2.2   Models  
Uncertainty from Climate models is an 
important source of uncertainty in short-
term and long-term climate change projec-
tions (Hawkins and Sutton, 2009; 
Räisänen, 2001). Every model is skillful in 
capturing some aspects of the climate sys-
tem, and there is no one model that is skill-
ful to simulate all variables and/or regions 
(Lambert and Boer, 2001). We focused 
our work on a multi-model combination 
analysis and used the maximum available 
number of climate models in order to con-
sider the widest possible range of model 
projections. This enables us to consider 
the skills of all models together in projec-
tions. The GCM projections for both his-
torical and future climate conditions were 
obtained from the Canadian Climate Data 
and Scenarios database (http://ccds-
dscc.ec.gc.ca) for the study region. This 

database provides monthly simulations of 
a broad range of climate variables based 
on different emission scenarios (A1B, A2, 
B1) and geographical position of every lo-
cation from 24 coupled atmosphere–ocean 
GCMs.The employed simulations were 
from a subset of GCMs which were used 
in the IPCC 4th assessment report/CMIP3. 
We only considered GCMs that would 
provide projections of all three emission 
scenarios for the study region in order to 
consider the uncertainty from emissions 
scenarios in projections. In order to use the 
maximum number of GCMs in our multi-
model projections, we selected 15 models 
which provided all three simulations of 
A1B, A2, and B1 emission scenarios from 
the set of 24 GCMs. The list of employed 
GCMs is given in Table 2. 
Table 2. Features of the GCMs from IPCC 
AR4 used in this study.  

 
 

Table 2. Features of the GCMs from IPCC AR4 used in this study. 

Country Developer GCM 
Model  

acronym 
Grid  

resolution 
Emission 
scenarios 

Australia 
Commonwealth Scientific and In-

dustrial Research Organization 
CSIRO-MK3.0 CSMK3 1.9° × 1.9° SRA1B, SRB1 

Canada 
Canadian Centre for Climate Mod-

eling and Analysis 
CGCM33.1 (T47) CGMR 2.8° × 2.8° SRA1B 

China Institute of Atmospheric Physics FGOALS-g1.0 FGOALS 2.8° × 2.8° SRA1B, SRB1 

France 
Centre National de Recherches 

Meteorologiques 
CNRM-CM3 CNCM3 1.9° × 1.9° SRA1B, SRA2 

France Institute Pierre Simon Laplace IPSL-CM4 IPCM4 2.5° × 3.75° SRA1B, SRB1, SRA2 

Germany 
Max-Planck Institute for Meteor-

ology 
ECHAM5-OM MPEH5 1.9° × 1.9° SRA1B, SRB1, SRA2 

Japan 
National Institute for Environmen-

tal Studies 
MRI-CGCM2.3.2 MIHR 2.8° × 2.8° SRA1B, SRB1 

Norway 
Bjerknes Centre for Climate Re-

search 
BCM2.0 BCM2 1.9° × 1.9° SRA1B, SRB1 

Russia 
Institute for Numerical Mathemat-

ics 
INM-CM3.0 INCM3 4° × 5° SRA1B, SRB1, SRA2 

UK UK Meteorological Office HadCM3 HADCM3 2.5° × 3.75° SRA1B, SRB1, SRA2 
UK UK Meteorological Office HadGEM1 HADGEM 1.3° × 1.9° SRA1B, SRA2 

USA Geophysical Fluid Dynamics Lab GFDL-CM2.1 GFCM21 2.0° × 2.5° SRA1B, SRB1, SRA2 

USA 
Goddard Institute for Space Stud-

ies 
GISS-AOM GIAOM 3° × 4° SRA1B, SRB1 

USA 
National Centre for Atmospheric 

Research 
PCM NCPCM 2.8° × 2.8° SRA1B, SRB1 

USA 
University Corporation for Atmos-

pheric Research (UCAR) 
CCSM3 NCCCS 1.4° × 1.4° SRA1B, SRB1, SRA2 

 
 
main sources of uncertainty in climate 
change projections and become more pro-
nounced at longer term projections that 
simulate climate change conditions at the 

end of the 21st century (Hawkins and Sut-
ton, 2009; Stott and Kettleborough, 2002). 
    The goal of this study was to investigate 
an alternative modeling approach for com-
bining outputs of several climate models 
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in order to reduce uncertainty in projec-
tions. In order to investigate the role of 
scenario uncertainty in projections, we 
considered three emission scenarios: A1B, 
A2, and B1, which are equivalent to 
RCP4.5, RCP8.5, and RCP2.6, respec-
tively. These scenarios were used in cli-
mate simulations by all selected 15 
GCMs. Each scenario takes into account 
the dominant features of emissions of 
greenhouse gases, such as physical, socie-
tal, and economic factors. In the present 
study, we only made use of three scenarios 
briefly described as follows: 
    A1B: This scenario which is equivalent 
to RCP4.5, depicts a future world with 
balanced consumption across energy re-
sources, a world with very rapid economic 
growth and rapid introduction of new and 
more efficient technologies, but with low 
population growth. Personal wealth is pre-
ferred over environmental quality in this 
world. 
   A2: This scenario which is equivalent to 
RCP8.5, depicts a differentiated world. In 
this scenario, high population growth, less 
concern for rapid economic development, 
and strengthening regional cultural identi-
ties, with an emphasis on family values 
and local traditions, are the underlying 
themes. 
   B1: This scenario which is equivalent to 
RCP2.6, depicts a convergent world. In 
this scenario, the introduction of clean 
technologies, rapid technology develop-
ment, and movement towards achieving 
environmental and social sustainability 
are the underlying themes. 
  
3   Methodology 
3.1    Simulation of present climate 
3.1.1    Single model simulations  
In some situations, a user usually has to 
decide beforehand which single model to 
choose for the decision-making process. 
This single model usually has better per-
formance than other models. In order to 
find the best single model for each varia-
ble in each station, we investigated which 

GCM would be more skillful in reproduc-
ing the variables in the historical climate 
for the study region. 
    We used some known indices to evalu-
ate the performance of the single models 
together with equally–weighted averaging 
of the model and the ANN combination 
approach in historical climate. In order to 
assess the skill of every single model in 
simulating monthly means of temperature 
and precipitation in historical climate for 
the study region, we used three indices for 
each scenario: coefficient of determina-
tion (R2) (Eq. 1), index of agreement (IA) 
(Eq. 2), and root mean square errors 
(RMSE) (Eq. 3). R2 and IA indicate the 
skill of the models in simulating the 
monthly means of the variables, and the 
more they are close to 1, the more it indi-
cates that the monthly means of the simu-
lations agree with observations. RMSE 
was used to investigate the accuracy of 
simulations of monthly means of the vari-
ables. RMSE is an error-index and demon-
strates the bias between simulations and 
observations. This index has the same 
scale as the variables and therefore pro-
vides a good judgment for us about the 
range of bias in simulations. Each of the 
three indices does not represent the skill of 
the models in simulations individually, but 
taking all three indices together into con-
sideration can tell us how skillful a model 
would be in simulating the historical cli-
mate.  

𝑅ଶ =  
ൣ∑೙

೔సభ ൫ௌ೔ି ௌ൯൫ை೔ି ை൯൧
మ

∑೙
೔సభ ൫ௌ೔ି ௌ൯

మ
 ∑೙
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మ

 
,  (1) 

𝐼𝐴 =  1 −  ൤
∑೙

೔సభ (ௌ೔ି ை೔)మ 

∑೙
೔సభ (|ௌ೔ ́|ା| ை೔ ́|)మ൨,   (2) 

𝑅𝑀𝑆𝐸 = [
ଵ

௡
(∑௡

௜ (𝑆𝑖 − 𝑂𝑖)ଶ)]ଵ/ଶ,  (3)  

where Si and Oi are the ith simulation and 
observation, and 𝑆 and 𝑂 are the means of 
simulations (Si) and (Oi), respectively, n is 
the total number of the evaluated samples. 
In Eq. (1-3) S'i and O'i are 
𝑆௜ ́ =  𝑆𝑖 − 𝑆                                (4) 
𝑂௜ ́ =  𝑂𝑖 − 𝑂                                            (5) 
In this section, the long-term monthly 
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means of each variable were initially cal-
culated from observations and GCM sim-
ulations. Then, the indices were calculated 
to compare the monthly means of the 
GCM simulations with observations in 
each station. The precipitation calculated 
by GCMs was based on mm/day which 
was changed to total precipitation in a 
month, based on mm, to match the obser-
vations.  
 
3.1.2    Equally–weighted model averag-
ing  
Averaging the equally-weighted models 
or so-called the “mean model” is the sim-
plest approach to combine outputs of sev-
eral climate models and therefore to quan-
tify uncertainty in projections (Lambert 
and Boer, 2001; Tebaldi and Knutti, 
2007). Compared to single model simula-
tions, this approach provides a better com-
parison to observations and is more 
straightforward than the weighting models 
based on their skill. We adopted the mean 
model approach as a reference to the best 
model and ANN approaches, and to see 
how much the mean model, in comparison 
with the two mentioned approaches, can 
reduce uncertainty in future climate simu-
lations. 
    Outputs of the 15 employed GCMs 
were obtained from the Canadian Climate 
Data and Scenarios database (http://ccds-
dscc.ec.gc.ca) for the baseline period of 
each variable and for each station. The 
baseline period for each station was de-
fined based on the availability of observa-
tions in that station. First, the long-term 
monthly means of the variables were cal-
culated from observations in each station. 
Then, the long-term monthly means of 
simulations were obtained from each 
GCM and each station based on its obser-
vation baseline. Finally, the long-term 
monthly means of simulations in each sta-
tion were compared with their correspond-
ing observations in each month. The com-
parison was made by using Eq. (1-3) and 
calculating the performance indices for 

the baseline period in each station.  
 
3.1.3   The ANN combination approach  
The objective of the present study was to 
investigate an alternative modeling ap-
proach to combining outputs of several 
climate model projections. We adopted 
the ANN approach to obtain a multi-
model combination of multiple GCM pro-
jections, and to investigate how much this 
approach was able to improve projections. 
ANNs have been used in several climate 
studies (Boulanger et al., 2006; 2007; Karl 
et al., 1990; Knutti et al., 2003; Mpelasoka 
et al., 2001; Sailor et al., 2000; Trigo and 
Palutikof, 1999). For instance, Boulanger 
et al. (2006) and Boulanger et al. (2007) 
used this approach to investigate future 
climate change conditions of temperature 
and precipitation over South America dur-
ing the twenty-first century. They found 
that the ANN would underestimate the po-
tential climate change projections simu-
lated by the IPCC models. 
    The ANN has two main roles in this 
study. First, it obtains an optimal combi-
nation of several GCMs. The optimal 
combination in this method is calculated 
by the network itself based on the skill of 
climate models in simulating the historical 
climate for the study region. Therefore, 
this method reduces the subjectivity and 
uncertainty aspects in constructing and 
combining metrics used for weighting the 
models. Second, the ANN approach corre-
lates the GCM outputs on grid-scale to 
sub-grid scale possesses that are captured 
in observations on the local scale. GCMs 
lack any representation of the local envi-
ronment especially the urban environment 
which may impact observations. The 
ANN approach provides a multi-model 
GCM projection which has been corrected 
for local environments especially for ur-
ban environments. 
    A detailed description of ANNs and 
multi-layer perceptron (MLP) can be 
found in numerous documentations in the 
literature. Therefore, in the present study, 
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we will only focus on a brief summary of 
the methodology. The basic structure of 
every neural network involves inter-con-
nected nodes that are arranged in layers. 
The architecture of every neural network 
is composed of an input layer, one or more 
hidden layers, and an output layer. Every 
node in the hidden and output layers con-
sists of activation and transfer functions. 
Initially, in each node, the activation func-
tion value is calculated. Then the calcu-
lated value passes through a transfer func-
tion. This process is identical for all nodes 
in hidden and output layers. The input 
layer, however, does not contain any acti-
vation or transfer function and serves 
merely to transfer the inputs to the net-
work. Finally, the output of the system is 
compared with the target value, and the 
output error of the modeling system is cal-
culated. The objective of the training 
phase is to reduce the output error of the 
modeling system to its minimum. In the 
back-propagation training algorithm, this 
task is accomplished by distributing the 
output error back into the system among 
network weights and adjusting the weights 
so that the final output error approximates 
the target value with a selected error goal. 
    Figure 1 shows a schematic diagram of 
the ANN architecture that has been used. 
In the present study, a three-layered feed-
forward MLP with a 15-30-1 network 
structure was used. The input layer con-
sisted of 15 inputs which represented the 
monthly means of each GCM in the base-
line period. Monthly means of the obser-
vations in each station were considered as 
the output of the network in the training 
phase. The historical simulated monthly 
means of each GCM were obtained from 
the Canadian Climate Data and Scenarios 
database (http://ccds-dscc.ec.gc.ca) for 
every station. A network with 15-30-1 
node architecture was selected by trial and 
error and by considering the performance 

of each model architecture. Finally, 30 
neurons were selected for the hidden layer 
because this number of nodes demon-
strated the best performance in simula-
tions. The dataset was divided into three 
subsets of the training set, test set, and val-
idation set, each having 70%, 15%, and 
15% of the total dataset, respectively. To 
evaluate the skill of each trained ANN, 
long-term monthly means of GCM simu-
lations were given to the network, and 
ANN values were obtained for each 
month. Then, the long-term monthly 
means simulated by the ANN were com-
pared with their corresponding monthly 
observations by using Eq. (1-3). Finally, 
the skill of each trained ANN was evalu-
ated by indices such as R2, RMSE, and IA. 
 
3.2    21st-century simulations  
Simulation of the climate variables for the 
21st century was conducted by using the 
trained ANNs that were developed for 
every station based on section 3.1.3. Pro-
jections of future monthly means of tem-
perature and precipitation from each GCM 
for the stations in the study region were 
obtained from the Canadian Climate Data 
and Scenarios database (http://ccds-
dscc.ec.gc.ca) database for the 2020–2100 
period. The projections were based on 
A1B, A2, and B1 emission scenarios 
which were regarded as the input to the de-
veloped ANNs. The GCM monthly simu-
lations for every station were given to the 
ANNs as their inputs, and future monthly 
means of temperature and precipitation 
were projected by the developed ANNs in 
each station for the 2020–2100 period. 
Then, the simulated monthly means were 
averaged over every 20 years for four pe-
riods of 2020–2039, 2040–2059, 2060–
2079, and 2080–2099 to demonstrate a 
better view of future changing trends in 
every station. 



Projection of Temperature and Precipitation for 2020-2100 Using Post-processing  ...                                                      131 

 

 
Figure 1. Schematic diagram of the used ANN architecture. 

 
Table 3. Calculated performance metrics for the developed ANNs in the test phase. 

 

Variable Stations No. of neurons R MAE RMSE 

Precipitation 

Karaj 30 0.56 14.92 24.02 

Mehrabad 30 0.56 16.93 27.66 

Doshan Tappeh 30 0.62 13.58 18.14 

Abali 30 0.68 22.33 28.33 

Temperature 

Karaj 30 0.96 2.204 2.885 

Mehrabad 30 0.98 1.382 1.721 

Doshan Tappeh 30 0.98 1.303 1.644 

Abali 30 0.98 1.773 2.128 

 
Table 4. Validation of temperature simulated by single models. 

 
 Abali- A1B  Doshan Tappeh-A1B  Karaj- A1B  Mehrabad- A1B 

Models R2 IA RMSE  R2 IA RMSE  R2 IA RMSE  R2 
IA RMSE 

BCM2.0 0.993 0.998 0.900  0.980 0.746 9.206  0.982 0.876 6.237  0.975 
0.747 9.151 

CGCM3T63 0.978 0.989 2.032  0.975 0.768 9.433  0.971 0.889 6.334  0.975 
0.758 9.554 

CNRMCM3 0.978 0.972 2.988  0.990 0.853 7.138  0.983 0.949 4.050  0.989 
0.845 7.230 

CSIROMk3.5 0.942 0.510 11.550  0.979 0.974 2.641  0.969 0.941 3.842  0.980 
0.975 2.600 

ECHAM5OM 0.977 0.748 8.674  0.997 0.933 4.420  0.993 0.990 1.636  0.998 
0.935 4.349 

ECHO-G 0.995 0.927 4.917  0.995 0.936 4.763  0.995 0.990 1.789  0.995 
0.935 4.750 

GFDLCM2.1 0.979 0.901 5.409  0.988 0.935 4.486  0.981 0.989 1.792  0.987 
0.937 4.384 

GISS-ER 0.957 0.875 6.860  0.961 0.959 4.024  0.949 0.978 2.873  0.959 
0.955 4.198 

HADCM3 0.943 0.932 4.566  0.975 0.899 5.734  0.963 0.971 2.974  0.979 
0.900 5.670 

INMCM3.0 0.953 0.942 3.641  0.978 0.734 8.116  0.968 0.881 5.238  0.979 
0.731 8.113 

IPSLCM4 0.995 0.875 5.871  0.984 0.938 4.249  0.987 0.991 1.608  0.984 
0.937 4.244 

MIROC3.2 medres 0.978 0.781 8.555  0.987 0.993 1.551  0.982 0.984 2.331  0.987 
0.993 1.578 

MRI CGCM2.3.2a 0.980 0.921 5.166  0.989 0.939 4.693  0.984 0.987 2.060  0.990 
0.938 4.690 

NCARCCSM3 0.981 0.904 5.295  0.987 0.928 4.704  0.983 0.966 3.204  0.986 
0.877 6.236 

NCARPCM 0.972 0.991 1.590  0.991 0.680 10.050  0.984 0.833 7.021  0.991 
0.675 10.078 
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4   Results and discussion  
4.1    historical climate simulations 
As described in section 3.1.3, an ANN was 
developed for every variable and station. 
The statistics of the test phase of the de-
veloped ANNs are given in Table 3. More-
over, the calculated performance indices 
of every single GCM are given in Tables 
4–7 for only the A1B emission scenario. 
A model that has the highest R2 and D and 
the lowest RMSE can be considered as the 
best GCM for the study region. Among the 
15 models, calculated R2 and D are almost 
in the same range, and therefore RMSE 
could be regarded as the best index to dis-
tinguish the skilled GCM among the other 
models. 
    Table 4 gives the calculated perfor-
mance indices for temperature for every 
15 GCM in this study. As Table 4 indi-
cates, there was not a unique single model 
that could be skillful over all four stations. 
Calculated indices indicate that at Doshan 
Tappeh and Mehrabad stations, located in 
Tehran megacity, the MIROC3.2 medium 
resolution GCM had the best agreement 
between simulations and observations, 
and, therefore the lowest uncertainty 
among the 15 models for Tehran meg-
acity. Although this model did not have 
the highest R2, it had the lowest RMSE 
among the single models, which made it 
the best model for simulating temperature 
in the area. At Doshan Tappeh station, 
CSIROM and IPSL, and at Mehrabad sta-
tion, CSIRO and GISS GCMs were the 
second and third models that had better 
skills in simulating the historical climate 
over the other models in the area, respec-
tively. At Abali station, BCM2, and at Ka-
raj station, the IPSLCM4 GCMs had the 
best agreement between simulations and 
observations, respectively. Therefore, 
these GCMs were considered as the best 
models for simulating temperature in 
these stations. At Abali station, NCAR 
and CGCM3T, and at Karaj station, IPSL 
and ECHOG were the second and third 
models that had better skills in simulating 

the historical climate over the other mod-
els in the area, respectively. 
    Table 5 compares the calculated indices 
between the mean model and the ANN ap-
proach for temperature. As Table 5 indi-
cates, the mean model did not improve the 
simulations. The indices indicated that 
there were some single models that had 
better skills in simulating historical cli-
mate than the mean model. However, 
there was a significant improvement in 
temperature simulations with the ANN ap-
proach. This approach considerably re-
duced RMSE and improved the tempera-
ture simulations by demonstrating the best 
skill compared to both the mean model 
and single models simulations. 
Table 6 gives the calculated indices for 
every 15 GCM for precipitation. As Table 
6 indicates, similar to temperature simula-
tions, there was not a single model that 
could be skillful over all four stations. At 
Mehrabad and Doshan Tappeh stations lo-
cated in the Tehran metropolis, MRI-
CGCM2.3.2a and IPSL CM4 had the best 
agreement between simulations and obser-
vations, respectively. At Karaj and Abali 
stations, located near Tehran megacity, 
MRI and ECHO-G models had the best 
skill in simulating historical climate, re-
spectively. 
    Table 7 compares the calculated indices 
between the mean model and the ANN ap-
proach for precipitation. As Table 7 indi-
cates, the ANN approach did not have a 
satisfactory skill in simulating the histori-
cal period precipitation in all four stations. 
The ANN approach outperformed the sin-
gle models in Abali and Mehrabad sta-
tions. However, in Doshan Tappeh and 
Karaj  
    Different calculated ranges of the indi-
ces, such as RMSE and R2, in the simula-
tion of temperature and precipitation by 
single models indicate that the models can 
simulate temperature with higher confi-
dence than precipitation in the historical 
climate. Moreover, there is a substantial 
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difference among single models in simu-
lating the historical precipitation. Unlike 
precipitation, the temperature has a nar-
rower range of indices, especially RMSE, 
in simulations of historical climate. These 
results are compatible with several studies 
such as Hawkins and Sutton (2009), which 
have indicated this issue. A wider range of 
RMSE and R2 in simulating baseline pre-
cipitation compared to temperature high-
lights the fact that models simulate  

historical precipitation with lower confi-
dence than temperature. The low confi-
dence in the simulation of precipitation is 
due to the fact that models are not able to 
correctly project some underlying sub-
grid processes that influence precipitation 
change. Moreover, precipitation is 
strongly influenced by some local or re-
gional geographic features, such as moun-
tainous terrain. These features are not usu-
ally well presented in current GCMs.  

 
 

Table 5. Validation of temperature simulated by the mean model and the ANN approach. 
 

Method R2 IA RMSE  R2 IA RMSE  R2 IA RMSE  R2 IA RMSE 
SIMPLE 
AVE. 0.984 0.915 5.127  0.992 0.919 5.104  0.987 0.985 2.142  0.992 0.918 5.122 

ANN 0.992 0.998 0.892  0.999 1.000 0.345  0.981 0.995 1.262  0.998 0.999 0.459 

 
 

Table 6. Validation of precipitation simulated by single models. 
 

 Abali- A1B  Doshan Tappeh-A1B  Karaj- A1B  Mehrabad- A1B 

Models R2 IA RMSE  R2 IA RMSE  R2 IA RMSE  R2 IA RMSE 

BCM2.0 0.30 0.65 37.73  0.21 0.00 50.51  0.36 0.00 50.51  0.25 0.00 55.21 

CGCM3T63 0.49 0.74 25.58  0.34 0.65 20.97  0.46 0.68 19.60  0.35 0.57 23.26 

CNRMCM3 0.04 0.51 33.26  0.01 0.02 34.25  0.04 0.00 35.28  0.00 0.00 38.02 

CSIROMk3.5 0.90 0.00 40.14  0.75 0.88 9.48  0.82 0.91 7.73   0.76 0.92 7.32 

ECHAM5OM 0.75 0.06 37.84  0.46 0.70 12.54  0.60 0.77 10.76  0.49 0.69 11.85 

ECHO-G 0.75 0.77 22.31  0.64 0.81 13.59  0.77 0.82 13.01  0.63 0.74 15.13 

GFDLCM2.1 0.70 0.61 28.98  0.59 0.87 11.12  0.75 0.92 8.67  0.66 0.90 9.16 

GISS-ER 0.54 0.65 27.63  0.53 0.82 14.36  0.63 0.84 12.92  0.53 0.76 16.09 

HADCM3 0.75 0.29 34.52  0.61 0.80 11.52  0.80 0.92 7.51  0.70 0.88 8.43 

INMCM3.0 0.27 0.00 35.13  0.19 0.51 14.74  0.26 0.54 13.31  0.15 0.49 14.82 

IPSLCM4 0.85 0.57 29.09  0.91 0.97 4.99  0.83 0.95 6.27  0.93 0.97 5.46 
MIROC3.2 
medres 0.61 0.30 33.57  0.49 0.80 11.71  0.66 0.88 8.75  0.51 0.83 10.39 
MRI 
CGCM2.3.2a 0.94 0.72 25.74  0.93 0.98 5.17  0.95 0.97 5.29  0.97 0.97 5.39 
NCAR-
CCSM3 0.75 0.69 25.43  0.87 0.94 7.59  0.74 0.86 10.87  0.85 0.88 10.20 

NCARPCM 0.69 0.00 41.03  0.59 0.53 15.77  0.74 0.65 13.15  0.63 0.67 12.56 

 
 
 

Table 7. Validation of precipitation simulated by the mean model and the ANN approach. 
 

Method R2 IA RMSE  R2 IA RMSE  R2 IA RMSE  R2 IA RMSE 
SIMPLE 
AVE. 0.62 0.59 27.39  0.49 0.78 13.53  0.66 0.82 11.94  0.51 0.72 14.79 

ANN 0.65 0.82 20.99  0.87 0.86 9.47  0.82 0.95 6.36  0.93 0.98 3.94 
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    Furthermore, the identity of models and 
their ranking based on their skill changed 
between the two variables and among sta-
tions, i.e., there was not a unique model 
which could represent the best model for 
all variables and/or stations over the re-
gion. These results are similar to results 
from studies such as Hagedorn et al. 
(2005) and Gleckler et al. (2008) which in-
dicated that the models that were best for 
temperature were not necessarily best for 
other variables such as precipitation. The 
mean model, which was calculated by 
simple averaging the outputs of the single 
models, was also considered in this study 
as a reference method for the ANN com-
bination approach. As the calculated indi-
ces indicated, the mean model only pro-
vided the mean state of a variable and did 
not agree well with the historical climate 
compared to some single model simula-
tions and the ANN combination approach. 
    Compared to the mean model, the indi-
ces indicated that the ANN combination 
approach significantly improved the sim-
ulations of historical climate. The ANN 
combination approach improved the IA 
and R2 and considerably reduced the 
RMSE, especially in temperature simula-
tions. In simulating temperature, the ANN 
approach demonstrated to have the best 
skill at simulating historical monthly 
means of the variables than the mean 
model and the best model in all 4 stations. 
In simulating the historical precipitation, 
however, the ANN approach was not the 
best approach in all stations, although it 
performed better than the mean model. In 
Abali and Mehrabad stations, the ANN 
had the best skill in simulating the histori-
cal precipitation. In Doshan Tappeh and 
Karaj stations, however, single GCMs had 
better skills than the other two approaches 
and were the best single models for simu-
lating the precipitation. The reason for the 
better performance of some single models 
over the ANN combination approach in 
simulating the historical precipitation in 
some stations may be because some single 

models may resolve the sub-grid pro-
cesses in simulating the precipitation, such 
as the geographical features of the study 
location better than other GCMs do. 
Moreover, we used all available models to 
incorporate all skills of the models into 
multi-model simulations. In a multi-model 
approach based on the historical skills of 
models, due to the low skill of some mod-
els in simulating a variable, some models 
affect the outcome of a multi-model pro-
jection by reducing the accuracy of simu-
lations (Giorgi and Mearns, 2002; Tebaldi 
and Knutti, 2007). In addition, a study by 
Hagedorn et al. (2005) showed that for 
some variables, the multi-model combina-
tion might not be significantly better than 
the best single model. He concluded that 
the performance of a multi-model combi-
nation approach must be evaluated when 
considering its overall performance over 
all aspects of predictions.   
    To sum up, the results indicated that the 
proposed ANN combination approach to 
combining GCM simulations is able to re-
duce uncertainties and, therefore to im-
prove reliability in climate projections, es-
pecially for temperature, compared to the 
best single model and the simple averag-
ing approach. Therefore, based on its per-
formance in historical climate, the ANN 
approach was adopted to produce a multi-
model projection of temperature and pre-
cipitation for the study region.   
 
4.2    21st century projections 
The performance of the ANN combination 
approach based on simulating temperature 
and precipitation for the historical climate 
was investigated in section 4.1. The ANN 
combination approach demonstrated to 
have a better skill over the mean model 
and the best single model in combining 
outputs of historical climate models and 
delivering more reliable results in all sta-
tions. Therefore, in order to investigate the 
future changes in temperature and precip-
itation in the study region, we used the 
ANN approach to provide a multi-model 
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projection of the variables by combining 
projections from 15 GCMs for the 21st 
century for the study region. 
    Figure 2 illustrates the projected tem-
perature change for every station. 
Mehrabad and Doshan Tapeh stations are 
located in Tehran megacity and usually 
have higher temperatures. Karaj station is 
located in the Karaj urban area on the west 
side of Tehran megacity, and Abali station 
is located on the heights of Abali in Alborz 
Mountain Range with usually lower tem-
peratures and higher precipitation than the 
other three stations. Projections of future 
climate conditions by the ANN multi-
model approach indicated an increase in 
temperature in all stations and for all sce-
narios, even in Abali station, which usu-
ally has lower temperatures due to its 
higher altitude. Comparing the three sce-
narios (A2, A1, B, and B1) showed that 
the projected patterns were similar in all 
stations and differed mainly in their am-
plitude. Among the stations, projections 
suggested that Abali station would experi-
ence the least warming of about 1-2 ⁰C, 
and Doshan Tappeh station would experi-
ence the largest warming of about 3-4 ⁰C 
among all scenarios at the end of the 21st 
century. Moreover, the projected changes 
in temperature were greater for stations lo-
cated in Tehran megacity than stations in 
its neighboring areas, like Karaj and Abali 
stations. This may be because the ANN 
approach is capable of incorporating the 
effect of the urban environment into the 
projections. Therefore, the coarse resolu-
tion GCM outputs for the study region are 
corrected for the Tehran Urban environ-
ment by establishing a relationship be-
tween baseline simulations and observa-
tions. Furthermore, as Stott and Kettlebor-
ough (2002) showed, the contribution of 
scenario uncertainty to projections would 
increase for lead times of more than 30 
years. As the multi-model projections in-
dicate, differences among scenarios be-
came more pronounced in the second part 

of the 21st century, which is compatible 
with similar results such as those of Stott 
and Kettleborough (2002) and Hawkins 
and Sutton (2009). The scenarios departed 
from each other in projections after the 
first period (2020–2039), and the diver-
gence grew among the scenarios up to the 
end of the 21st century. A2 was the sce-
nario with the greatest increase, and B1 
was the scenario with the smallest increase 
at the end of the century in all stations. 
    Figure 3 illustrates the future changes in 
precipitation for every station. The ANN 
approach projected a decrease in precipi-
tation in all stations and for all scenarios. 
Comparing the three scenarios (A2, A1, B, 
and B1) showed that the projected patterns 
were similar in all stations and differed 
mainly in their amplitude. Among the sta-
tions, ANN projections indicated that the 
Karaj station would experience the least 
reduction of about 1.5-2 mm among all 
scenarios at the end of the 21st century. 
Similar to temperature, the Doshan 
Tappeh station experienced the largest 
changes. The ANN projected the greatest 
reduction of about 7–9.5 mm at the end of 
the 21st century. Climate models repre-
sented general patterns of temperature 
fairly better than precipitation. Among 
stations, projections were more uncertain 
in Abali station. Projections had greater 
amplitude in Abali than in other stations. 
In the long-term, B1 did not indicate any 
reductions in this station and diverged 
from the other two scenarios since the first 
period. However, A1B and A2 projected a 
decrease in precipitation similar to other 
stations. Similar to temperature projec-
tion, scenarios departed from each other in 
projections after the first period, and the 
uncertainty grew among the scenarios in 
the second part of the 21st century. More-
over, A2 projected the largest decrease, 
and B1 projected the smallest decrease in 
precipitation at the end of the 21st century 
in all stations. 
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Figure 2. Multi-model projection of temperature by the ANN combination approach. 

 
Figure 3. Multi-model projection of precipitation by the ANN combination approach. 
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4    Conclusion  
The goal of this study was to investigate 
whether combining model projections by 
ANN combination approach could im-
prove multi-model projections and there-
fore reduce the uncertainty in climate pro-
jections. To establish a reference for the 
ANN combination approach, the equal 
weighting of the models (the mean model) 
and single climate models (the best single 
model) was also considered in the study. 
 Simulations of climate variables of the 
historical period showed that the ANN 
combination approach was successful in 
combining the outputs of several climate 
models and in reducing the uncertainty in 
simulations of historical climate variables. 
Based on the calculated performance indi-
ces for the three approaches, we can con-
clude that projections based on single 
model simulation might not yield reliable 
results because single model simulations 
showed that the identity of models and 
their ranking based on their skill changed 
between the two variables and also among 
stations. The mean model was also not 
skillful enough to give a reliable projec-
tion of the historical climate. However, 
calculated performance indices indicated 
that combining model projections by the 
ANN approach significantly improved the 
simulations of historical temperature and 
precipitation than the single model and the 
mean model approaches. Based on the his-
torical skill of each approach, we can con-
clude that the ANN approach could give 
the best estimate of future trends of tem-
perature and precipitation for a local envi-
ronment. Therefore, the ANN approach 
was used to estimate projections of future 
temperature and precipitation for the study 
region. 
    The ANN approach can benefit the cli-
mate change projections due to the fact 
that it derives an optimal combination of 
several climate models by correlating the 
GCM simulations at the grid-scale to ob-
servations of climate variables at the local 
scale. Therefore, this procedure reduces 

the subjectivity and uncertainty aspects in 
constructing and combining metrics used 
for weighting the models and delivers a 
multi-model projection that has been cor-
rected for a specific local environment, es-
pecially for urban environments. How-
ever, the ANN approach is subject to some 
limitations which exist in similar skill-
based performance studies of models. The 
optimal combination of models is derived 
based on the skill of the models in the sim-
ulation of the historical climate. The un-
derlying assumption governing this ap-
proach is the stationary relation between 
observed and simulated trends. This rela-
tion is formed in the training period of the 
ANN-based on the twentieth-century cli-
mate and is applied to future simulations. 
A debate that exists here is that the skills 
of climate models are evaluated based on 
their performance in historical climate 
conditions, and, likely, the present optimal 
combination of models may not be the op-
timal combination in the future climate. 
This issue is due to some limitations that 
exist among present models. For instance, 
some characteristics of the climate mod-
els, such as model parameterizations or 
impacts of some physical processes, such 
as carbon cycle feedbacks, may change 
under future climate forcing (Frame et al., 
2007; Knutti et al., 2010). However, the 
only guidance that we have to evaluate the 
performance of current models is to eval-
uate their skills by comparing their simu-
lations against observations of different 
historical climate aspects. We might not 
be able to judge whether the closest pro-
jection to a multi-model average of future 
projections would be the best estimate of 
future climate due to the mentioned limi-
tations, but for the historical climate, we 
can decide that if a methodology gives 
better simulations of different aspects of 
historical climate compared to observa-
tions, it would be a more skillful method-
ology and might give more reliable results 
for present climate. Consequently, using 
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the skills of models based on their histori-
cal performance may be a good measure 
for constructing a multi-model combina-
tion of models. The difficulty remains in 
how to integrate the historical skills of 
models into their future projections. In this 
research study, we tried to address this is-
sue by associating multiple climate mod-
els’ projections with climate observations 
at a local station. Still, the methodology is 
subject to some limitations. Therefore, as 
many studies such as Knutti et al. (2010) 
have suggested, future research would 
benefit from developing methodologies to 
select and weight models and developing 
new approaches to combine multi-model 
projections to assess and reduce uncer-
tainty in future climate projections. 
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