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Abstract 
Deformation monitoring is a crucial engineering task for public safety. Any incorrect estimation of 
displacement rates can cause economical and deadly effects on engineering structures. Three meth-
ods have already been developed for structure deformation monitoring in the geodetic community: 
the single point method, and the robust and combinatorial estimation methods. In this article, the 
methods were implemented on a simulated dataset of the Global Navigation Satellite System. As a 
result, the Simultaneous Adjustment of Two Epochs and Multiple Sub Sample using distance differ-
ences methods were defined as the most optimal methods to find the stable and unstable points in the 
simulated network. To show the performance of the methods on a real dataset, the optimal methods 
were employed on the real GNSS observations collected of a pedestrian steel bridge in Tehran. The 
GNSS receiver type is LEICA GRX1200+GNSS. Moreover, two scenarios are investigated: all 
epochs have the same global coordinate systems (Scenario A), and analysis of the earth’s surface 
movements with the local coordinate system in the first epoch of observations and the global WGS84 
coordinate system for the others (Scenario B). The 3-D Helmert transformation was also used to 
transfer the global coordinate systems to the local one. Scenario B showed better results with a 
smaller RMS error with an amount of 7e-5.  
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1    Introduction 
The Earth’s layers move both horizontally 
and vertically due to many natural or arti-
ficial reasons such as changes in the 
groundwater level, tectonic activities, 
landslides, etc. These movements induce 
deformations and displacements in the 
manmade large engineering structures 
such as bridges, towers, and dams. For 
structural health monitoring, the structure 
response should be measured in a very 
careful way (Mohamed (2013)). There are 
two deformation monitoring techniques: 
geodetic and non-geodetic (geotechnical 
method) (Erol et al. (2004)). In non-geo-
detic techniques, the relative deformations 
are directly measured. The instruments 
like stress meters, inclinometers, piezom-
eters, strain gauges, and extensometers are 
used in this technique (Dunnicli 1988, 
Teskey (1987)). In the geodetic monitor-
ing methods, a geodetic network is de-
signed in an optimal way. The network 
stations should repeatedly be observed in 
two or more epochs. The network obser-
vations analysis procedure includes three 
steps: Global Congruency Test to check 
the presence of displacement in each 
epoch, the unstable points rollout in each 
epoch or the so-called localization pro-
cess, and finally estimation of displace-
ment vectors. Two epochs under evalua-
tion should have the same datum and net-
work scale. Otherwise, the S-transfor-
mation will be used to unify the datum for 
both epochs.  
    This paper contains these sections: 
First, all deformation monitoring methods 
will be discussed in detail. Next, the pre-
sented methods will be examined on the 
simulated and real GNSS data, and the 
achieved results are evaluated. Finally, the 
paper ends up with a summary and conclu-
sion. 
2    Network analysis 
The classical congruence analysis of 
geodetic networks consists of three major 
steps. After an adjustment of each epoch 
with the inner-constraint approach, first, 

the GCT is performed to examine the 
existence of deformations between epochs 
using the estimated results. Then, in the 
localization step, single-point, robust 
estimation, and combinatorial search 
methods will be applied on two epochs 
under comparison with the same datum in 
the network. On the other hand, because of 
many environmental reasons such as 
different atmospheric conditions in each 
observation campaign, an S-
transformation is used to transfer the 
datum of each epoch to a common one. 
Furthermore, using different uncalibrated 
instruments for collecting measurements 
in successive epochs may cause problems. 
This can change network scale between 
epochs and cause multiple errors in 
deformation analysis. Thus, the scale-
independent determination of 
deformations, combination of different 
data types, different setups of the 
coordinate system, and the choice of 
instrumentation, are the reasons for devel-
opment of the new methods of analysis 
(Ebeling (2014)). 
 
3    Deformation analysis 
To detect any probable displacement in 
engineering structures, we need a geodetic 
monitoring network (Welsch, Heunecke et 
al. (2000)). It can be detected using well-
mounted benchmarks at specific places on 
the structure. At first, the estimated 
variance test is used for compatibility 
comparison of the results from different 
epochs. This test is done by the estimated 
variance of epoch i and epoch j as follows: 
Null hypothesis 𝐻଴: 
𝐸{𝜎̑଴೔

ଶ } = 𝐸{𝜎̑଴ೕ

ଶ }                                   (1) 

Alternative hypothesis 𝐻஺: 
𝐸{𝜎̑଴೔

ଶ } ≠ 𝐸{𝜎̑଴ೕ

ଶ }                                   (2) 

Test statistic: 

𝑇ி =
ఙ̑బ೔

మ

ఙ̑బೕ
మ                                                 (3) 

 
If the test statistic cT_F fits with Fisher-
distribution, that means the null 
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hypothesis H_0 cannot be refused. Then, 
the deformation analysis procedure can be 
started. 
𝑇ி ≤ 𝐹௦ୀଵିఈ/ଶ,௙భୀ௥೔,௙మୀ௥ೕ

                       (4) 
Where α is the defined significance level 
for the test, 𝑟௝  and 𝑟௝  are the network 
redundancies for epochs i and j (Welsch, 
Heunecke et al. (2000)). Further 
information can be found in (Grundig 
(1985); Gründig, Neureither et al. (1985)). 
 
3.1    GCT 
To start the deformation monitoring pro-
cedure, first, the GCT should be run on the 
estimated results of two epochs. If this test 
passes the results are comparable. (Amiri-
Simkooei, Alaei-Tabatabaei et al. (2016)). 
If the 𝐻଴ hypothesis is true, there isn’t any 
deformation between epoch i and j. Where 
𝑥⃗௜  and 𝑥⃗௝ are the adjusted coordinate of 
epoch i and j. 

𝑥⃗௜ − 𝑥⃗௝ = 0ሬ⃗  (5) 
 

If the test in (4) passes, the combined 
variance factor 𝜎̑଴

ଶ, for both epochs equal 
to 

𝜎̑଴
ଶ =

𝑣⃗௜
்𝑃௜𝑣⃗௜ + 𝑣⃗௝

்𝑃௝𝑣⃗௝

𝑟௜ + 𝑟௝

=
𝑟௜𝜎̑଴೔

ଶ + 𝑟௝𝜎̑଴ೕ

ଶ

𝑟௜ + 𝑟௝
 

 (6) 
 

where 𝑃௜ and 𝑃௝ are the weight matrices, 𝑣⃗௜ 
and 𝑣⃗௝ are the estimated residual vectors, 
𝑟௜ and 𝑟௝  are the network redundancies for 

epochs i and j. If the 𝑑 is the deformation 
between two epochs: 

𝑑 = 𝑥⃗௜ − 𝑥⃗௝  (7) 

According to covariance propagation law, 
the corresponding weight matrix 𝑃ௗௗ can 
be calculated by 𝑄௫௫೔

and 𝑄௫௫ೕ
which are 

the cofactor matrices of epoch i and j. 
𝑃ௗௗ = (𝑄௫௫೔

+ 𝑄௫௫ೕ
)ିଵ  (8) 

If we assume the observations are 
independently measured in two epochs, 
the quadratic form 𝛺̑ଶ can directly be 
calculated from the results of the 
individual adjustments of each epoch. 

𝛺̑ଶ =
𝑑்𝑃ௗௗ𝑑

ℎ
 

 (9) 

where ℎ is equal to b - d, where b is the 
total number of the condition equations 
and d is the rank defect of the weight ma-
trix 𝑃ௗௗ . These can be determined using: 

𝑑𝑙 = 𝑙௜ − 𝑙௝ = 𝐴௜
்𝑥⃗௜ − 𝐴௝

்𝑥⃗௝ (10) 

𝑙௜ and 𝑙௝  are observation vectors, 𝑑𝑙is the 
observation difference, 𝐴௜ and 𝐴௝ are 
design matrices of epoch i and j. Their 
cofactor matrix follows: 

𝑄ௗ௟ = 𝐴௜
்𝑄௫௫೔

𝐴௜ + 𝐴௝
்𝑄௫௫ೕ

𝐴௝  

ℎ = 𝑟𝑘(𝑄ௗ௟) = 𝑟𝑘(𝑃ௗௗ) 
(11) 

Then, the quadratic form 𝛺̑ଶ can directly 
be calculated using the estimated results of 
the  epochs: 

𝛺̑ଶ =
𝑑𝑙்𝑄ௗ௟

ିଵ𝑑𝑙

𝜎̑଴
ଶℎ

 
 
(12) 

As seen, the two quantities 𝛺̑ଶ and 𝜎̑଴
ଶ are 

stochastically independent and can 
therefore be contrasted using the global 
congruency test as below. 
Null hypothesis 𝐻଴: 
𝐸{𝜎̑଴

ଶ} = 𝐸{𝛺̑ଶ}                                 (13) 
Alternative hypothesis 𝐻஺: 
𝐸{𝜎̑଴

ଶ} < 𝐸{𝛺̑ଶ}                                 (14) 
Statistical Test: 

𝑇 =
ఆ̑మ

ఙ̑బ
మ                                              (15) 

If the result of 𝑇ி agrees with Fisher-
distribution, that means: 

𝑇 ≤ 𝐹௦ୀଵିఈ/ଶ,௙భୀ௛೔,௙మୀ௥೔ା௥ೕ
 (16) 

With a given significance level α and the 
degrees of freedom 𝑓ଵ = ℎ and 𝑓ଶ = 𝑟௜ +
𝑟௝  (the sum of the network redundancies), 
𝜎̑଴

ଶ and 𝛺̑ଶ must be considered statistically 
identical. Alternatively, if the global 
congruency test fails, the existence of 
deformations between the two epochs is 
expected (Ebeling (2014)). 
 
3.1.1    Single point analysis 
This is the simplest and most common 
method in deformation analysis. The 
achieved results are influenced by the 
classic congruence method in the stability 
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identification of every single point in a ge-
odetic network.  
 
 Simultaneous Analysis of Two 
Epochs (SATE)  
In the classical approaches, the least-
squares estimation is applied on the col-
lected observations of each epoch. How-
ever, the methods will encounter many 
problems when a large set of different ob-
servation-type is simultaneously pro-
cessed. The SATE scheme is a new 
method developed based on the Baarda 
theory (Baarda (1968); Teunissen (2000), 
and Teunissen et al. (2005) , Amiri-
Simkooei and Asgari (2012), Amiri‐
Simkooei, Tiberius et al. (2007), and 
Amiri-Simkooei, Zaminpardaz et al. 
(2014)). To detect stable/ unstable points, 
the method is based on two hypotheses on 
the functional model. In the null 
hypothesis, all points of the geodetic 
network are assumed to be stable between 
two epochs. However, In the alternative 
hypothesis, it is assumed at least one point 
is subject to displacement (Amiri-
Simkooei, Alaei-Tabatabaei et al. (2016)).  
Model 1: 

ቊ
𝐻଴: 𝐸{𝑑̑} = 0

𝐸{𝑙} = 𝐴𝑥⃗
 (17) 

Null hypothesis 𝐻଴: 

𝐻଴: 𝐸(𝑙) ∼ 𝑁௠(𝐴𝑥, 𝐶௬) (18) 
Model 2: 

ቐ
𝐻௔ : 𝐸{𝑑̑} ≠ 0

𝐸{𝑙} = [𝐴, 𝐵] ൤
𝑥⃗
𝜁

൨ = 𝐴𝑥⃗ + 𝐵𝜁
 (19) 

Alternative hypothesis 𝐻஺: 

𝐻௔: 𝐸(𝑙) ∼ 𝑁௠(𝐴𝑥 + 𝐵𝜁, 𝐶௬) (20) 

In Eq. (17), 𝑚 × 1 vector 𝑙 and  𝑥⃗  𝑛 × 1  
vector are the observations and the un-
known parameters vectors, respectively. A 
is design matrix, 𝜁 is the displacement of 
the unstable points between two epochs 
with an appropriate design matrix 
represented by 𝐵. 𝑁௠ is an m-dimensional 
normal distribution with 𝐶௬covariance 
matrix of the observations. In both 

models, all stochastic characters of the 
observations are considered to be the 
same. The so-called σ is assumed to be 
known. Hence, the statistical test is 
defined as:  

𝑇௤ = 𝑒̑଴
்𝐶௬

ିଵ𝑒̑଴ − 𝑒̑௔
்𝐶௬

ିଵ𝑒̑௔ (21) 

where 𝑒̑଴ and 𝑒̑௔ are the least squares 
estimated residuals and q is the additional 
unknowns in the alternative hypothesis. 
The chi-square distribution is a criteria for 
the above test criterion. (Teunissen, Si-
mons et al. (2005), Amiri-Simkooei 
(2016)). 

𝐻଴: 𝑇௤ ∼ 𝜒ଶ(𝑞, 0), 𝐻௔: 𝑇௤

∼ 𝜒ଶ(𝑞, 𝜆) 
(22) 

Where the non-centrally parameter λ and 
𝑃஺

ୄthe orthogonal projector are: 
𝑃஺

ୄ

= 𝐼௠ − 𝐴(𝐴்𝐶௬
ିଵ𝐴)ିଵ𝐴்𝐶௬

ିଵ 
(23) 

𝜆 = 𝜁்𝐵𝑃஺
ୄ𝐶௬

ିଵ𝐵𝜁

= ‖𝑃஺
ୄ𝐵𝜁‖஼೤

షభ 
(24) 

the variance factor of the unit weight 
calculates, 𝐶௬ = 𝜎଴

ଶ𝑄, where Q is the 
known cofactor matrix (Amiri-Simkooei 
et al. (2016)): 

𝑇௤ =
1

𝑞𝜎̑௔
ଶ

𝜁்̑𝐵்𝑄ିଵ𝑄௘̑బ
𝑄ିଵ𝐵𝜁̑ 

(25) 

Assuming the alternative hypothesis, 𝜎̑௔
ଶ is 

an unbiased estimate of the variance factor 
and 𝑄௘̑బ

is the cofactor matrix of the least-
squares residuals under the null hypothe-
sis. 
 

𝜎̑௔
ଶ =

𝑒̑௔
்𝑄ିଵ𝑒௔

𝑚 − 𝑛 − 𝑞
 

 
(26) 

 
The statistical distribution of the given test 
is (Teunissen, Simons et al. (2005)): 

𝐻଴: 𝑇௤ ∼ 𝐹(𝑚 − 𝑛 − 𝑞, 0) 

𝐻௔: 𝑇௤ ∼ 𝐹(𝑚 − 𝑛 − 𝑞, 𝜆) 
(27) 

where the m and n are the dimensions of 
the observations and unknown vectors. 
The non-centrally parameter λ is given as 
(Amiri-Simkooei, Alaei-Tabatabaei et al. 
(2016)): 

𝜆 =
1

𝜎ଶ
𝜁்𝐵்𝑄ିଵ𝑄௘̑బ

𝑄ିଵ𝐵𝜁 
 
(28) 
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In this procedure, we first determine the 
coordinates of the points in each epoch us-
ing the inner-constraint method. Fisher's 
distribution is then used to determine 
𝑇௤using the initial values. The most unsta-
ble point corresponds to the highest 
𝑇௤value. The unstable point is eliminated 
and the new test value is calculated in the 
absence of the most unstable point. The 
new value and Fisher's distribution are 
compared. The second point with the 
highest 𝑇௤value is eliminated if the alter-
native test (Eq. 20) is rejected. The proce-
dure is continued until all unstable points 
are found. 
    The problem with the single-point 
analysis method is that the method doesn’t 
give the best results if a large number of 
points have displacement or any 
additional systematic error occurs 
between the epochs. Besides, this method 
checks each point of the network 
separately while the others assumed to be 
fixed. It increases the false detection of 
stable/ unstable points. Moreover, this 
method is based on the least squares 
estimation with the prerequisite of 
systematic error-free observations 
contaminated with the Gaussian noise. 
Otherwise, it leads to a wrong solution. 
 
    3.1.2. Combinatorial Search 
The two above methods, the classical 
Least-Squares-based single point analysis 
or the robust estimation techniques cannot 
yield reliable results in all casesdue their 
dependence on the network geometry 
(Ebeling (2014)). The new method, 
defined by Nietzel (2004) the so-called 
Maximum Sub Sample (MSS) method, and 
the M-split method substituted it, are the 
combinatorial search methods. 
 
 The Multiple Sub Sample using 
distance differences 
In this method, all possible distances 
between points in the network are 
computed from the adjusted coordinates in 
both epochs of i and j. According to the 

covariance law, their corresponding 
cofactor matrix is derived as (Ebeling 
(2014)): 

𝑙௜ = 𝐴௜
்𝑥⃗௜, 𝑄௟௟೔

= 𝐴௜
்𝑄௫௫೔

𝐴௜ (29) 

𝑙௝ = 𝐴௝
்𝑥⃗௝ , 𝑄௟௟ೕ

= 𝐴௝
்𝑄௫௫ೕ

𝐴௝  (30) 

First, with inner constraint estimates of the 
unknowns are calculated. Where 𝑙௜ and 𝑙௝  
are the observations vectors, 𝐴௜ and 𝐴௝ are 
the design matrices, 𝑄௫௫೔

and 𝑄௫௫ೕ
are the 

covariance matrices of the unknowns in 
the epoch i and j. Then the distance 
difference observation matrix 𝑑𝑙 and its 
cofactor matrix 𝑄ௗ௟ follows: 

𝑑𝑙 = 𝑙௜ − 𝑙௝ 𝑄ௗ௟

= 𝑄௟௟೔
+ 𝑄௟௟ೕ

 
(31) 

With the combined variance factor of both 
epochs 𝜎̑଴

ଶ, the standard deviation 𝜎̑ௗ௟ for 
the distance differences is available. With 
these observations, we can identify which 
distances have significant changes 
between the epochs. Each distance 
observation rejected in this test is subject 
to an observation  blunder (Ebeling 
(2014)).  

|𝑑𝑙௞| > 𝑇𝜎̑ௗ௟ೖ
 (32) 

where T is an experimental value (between 
3 and 5). Considering a very high value 
leads to acceptance of most observations 
while with a low value most observations 
are rejected. Each rejected observation in 
this test will be deleted. In the second step, 
the unknowns are calculated using the 
remaining observations via the least 
squares estimation (Ebwateling (2014)). 
 
 The Multiple Sub Sample using 
angles 
For a network with direction-only 
observations the scale factors cannot be 
computed.  Only approximate error 
estimates are available and hard 
thresholds for distance ratios cannot be 
determined. The least squares fit must 
then be computed for each candidate point 
to estimate the unknown scale factor and 
identify the correct solution. This makes 
the MSS distance ratio computationally 
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more expensive than the distance 
difference approach. The range ratio MSS 
is not used in this article due to its density 
and time-consuming computational 
process. In contrast, using the angle 
between epochs reduces computation 
time. This method excludes and examines 
angles that exhibit large changes. The 
number of angle observations for an epoch 
is less than the number of distances 
measurements. The distance difference 
approach is not applicable when the scale 
changes between the epochs. The angle-
based MSS approach combines the 
advantages of both distance-based MSS 
methods. Another advantage of the MSS 
method in general is the location of the 
largest similar point group. These points 
can be performed independently of the 
coordinate system and date definition of 
the respective epoch, as only date-
invariant elements (lengths and angles) 
are used  Ebeling (2014). 
 
 M-split 
Finding stable points in a geodetic control 
network affected by datum defect prob-
lems is difficult. A considerable number 
of data can aggravate this problem. 
(CHEN (1983), Baselga, García-Asenjo et 
al. (2015), Amiri-Simkooei et al. (2016), 
and Aydin (2017)).  
    Wiśniewski (2009, 2010) introduces the 
M-split method based on a robust M-
estimation (Wiśniewski (2009), 
Wiśniewski (2010)). Figure 1 shows the 
differences between the results of the 
robust M-estimation, the Msplit (q) 
estimation, and the least squares 
estimation on a given sample (Nowel 
(2018)). The M-split is a new method, that 
is based on a simultaneous and joint 
optimization process. (Nowel (2018) and 
Wiśniewski (2008, 2009)). 
    If we assume the two-dimensional 
problem, this consists of (q=2) local 
congruence models, therefore each value 
of the raw displacement vector can be a 
priori realization of each model (Nowel 

(2018)). 

 (33
) 

 

 (34
) 𝑑ଶ

௞ = (𝐼 − 𝐻(𝐻்𝑊(ଶ)
௞ 𝐻)ିଵ𝐻்𝑊(ଶ)

௞ )𝛥𝑦̑ 

Where 𝑑̑ଵ and 𝑑̑ଶ are the displacement 
component for x and y, 𝑊ଵ and 𝑊ଶ are the 
calculated weight from displacement 
vectors for x and y, and H is a datum 
matrix. If 𝑄ௗ̑ is the cofactor matrix of es-
timated displacement vector of all points. 

 
 
(35
) 

The global and local F-test is: 

 
(36) 

Where 𝑟 = 𝑟𝑎𝑛𝑘(𝑄ௗ̑), the variance factor 

estimator 𝜎̑଴
ଶ =

ఙ̑బభ
మ ାఙ̑బమ

మ

ଶ
, and 𝑑𝑓 = 𝑑𝑓ଵ +

𝑑𝑓ଶ is the network of freedom. The 
criterion of the test is Fisher-distribution. 
The test rejection shows possible 
displacement. The test should repeat for 
all points (Nowel (2018)). 

 
(37) 

Where 𝑟௜ = 𝑟𝑎𝑛𝑘(𝑄ௗ̑೔
), and 𝑄ௗ̑೔(ೕ)

 is the 

cofactor matrix of estimated displacement 
vector of point i for model j (Caspary 
(2000) and  Nowel (2016, 2018)). 

 
Figure 1. Comparison of the M-split (q) with q 
=3, robust M-estimation, and LS estimation 
(Wiśniewski (2009, 2010), and Nowel (2018)) 

 
4    The Helmert-transformation  
If two epochs under comparison have 
different coordinate systems, the Helmert 

1 1 2 1 2
1(2) (2)(( ) ....( ) )k k

k uW diag d d 
 

1
1 (1) (1)( ( ) )k T k T kd I H H W H H W x  
 

2 2 2
1(1) (1)(( ) ....( ) )k k

k uW diag d d


1 1( ) ( )T T

d d d d
Q Q HH Q Q HH       

2
0

( , )
T

d
d Q d

T F r df
r



 


 

( )

1
( ) ( )

( ) 2
0

( , )i j

T
i j i jd

i j i
i

d Q d
T F r df

r



 


 
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transformations should be operated on es-
timated coordinates. We have seven 
parameters in a 3-D network to define the 
geodetic datum completely: three 
rotations parameters defining the 
orientation of the coordinate axes 
(𝜔, 𝜑, 𝜅), three translations defining the 
origin (𝑇௫ , 𝑇௬ , 𝑇௭), and a scale factor (λ) 
defining distances in the coordinate 
system. It can be written as (Ebeling 
(2014)): 

𝑥⃗௜ = 𝜆. 𝑅. 𝑥⃗௝ + 𝑇ሬ⃗  (38) 

  

൥
𝑥
𝑦
𝑧

൩
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+ ቎

𝑇௫

𝑇௬

𝑇௭

቏ 

 
(39) 

To solve the equations, at least three 
points with known coordinates in both 
systems (local and global) are needed to 
find the unknown transformation parame-
ters. If  the coordinates 𝑥⃗௜  and 𝑥⃗௝ are ob-
tained in a free network adjustment, their 
corresponding cofactor matrices 𝑄௫௫೔

, and 
𝑄௫௫ೕ

 are singular (Ebeling (2014)). 
 
5    Results 
Herein, we use both simulated and real 
GNSS observations to show performance 
of the introduced methods. The results, 
their initial analysis, and the priority 
reasons for each method are explained. İn 
order to detect stable/unstable points, 
three methods are employed: the single-
point analysis, the robust estimation 
techniques, and the combinatorial search 
method. The methods are implemented on 
the simulated data and the most successful 
method is implemented on the real data. 
 
5.1.1    GNSS simulated data  
A network of nine points is used to 
evaluate the performance of the proposed 
methods. Points 5-9 are shifted in the 
second epoch to show a significant shift 
between the two epochs. Tables 2-4 
present the amounts of shifts. By applying 

different displacement values, in three 
cases, the success rate of different 
methods in detecting unstable points are 
compared. The results were evaluated at a 
significance level of 0.99. The success of 
different methods in this data is compared 
with each other. The 3D coordinates of the 
monitoring points are in a WGS84 global 
coordinate system. The true coordinates of 
the first epoch are listed in Table 1. 
 
Table 1. The first epoch coordinates of GNSS ob-
servations 

Point 
numbe

r 
X (m) Y (m) Z (m) 

1 
3225238.34

2 
4052706.57

2 
3712624.90

4 

2 
3238443.65

9 
4060239.72

2 
3691798.55

7 

3 
3247605.21

7 
4038624.39

8 
3707994.10

3 

4 
3245085.09

4 
4050269.74

8 
3697002.55

8 

5 
3221372.09

1 
4062200.73

3 
3705189.48

8 

6 
3240499.21

5 
4049740.06

7 
3701662.68

1 

7 
3234236.83

8 
4053154.28

4 
3703562.93

9 

8 
3234478.24

2 
4053333.42 3703078.49 

9 
3234261.28

4 
4053129.14

6 
3703552.64

3 

 
A horizontal plot of the network points is 
shown in Fig. 2. The simulated 
coordinates for the subsequent epochs are 
obtained by adding simulated 
deformations for each epoch to the 
coordinates of the base epoch. 
  
 Baseline Processing 
As we know, processing the baselines is 
an essential and primary job for static po-
sitioning Curran (2008). Four stations of 
the network (points 1-4) were chosen as 
fixed points. The observations consist of 
horizontal distances. We added a gaussian 
random noise to observations with 
standard deviations of about ±(4mm +
5ppm) for horizontal distances. 
    Three cases are considered for 
displacement in stations 5-9. The assumed 
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displacement values over the points are 
listed in Tables 2-4.  

 
Figure 2. The simulated data network 

 
Table 2. Real deformation of the points for case 1 
in meters 

 First case 
Point ΔX ΔY ΔZ Norm 

5 0.337 0.166 0.748 0.837 
6 0.162 0.602 0.450 0.769 
7 0.794 0.263 0.083 0.841 
8 0.311 0.654 0.229 0.76 
9 0.529 0.689 0.913 1.26 

 
Table 3. Real deformation of the points for case 2 
in meters 

 Second case 
Point ΔX ΔY ΔZ Norm 

5 0.015 0.044 0.082 0.094 
6 0.083 0.01 0.087 0.120 
7 0.054 0.097 0.008 0.111 
8 0.10 0.001 0.04 0.107 
9 0.008 0.077 0.026 0.082 

 

Table 4. Real deformation of the points for case 3 
in meters 

 Third case 
Point ΔX ΔY ΔZ Norm 

5 0.008 0.001 0.001 0.008 
6 0.004 0.001 0.009 0.01 
7 0.009 0.009 0.006 0.014 
8 0.002 0.006 0.004 0.007 
9 0.002 0.005 0.005 0.008 

 

 Results of network analyses 
The inner-constraint approach was run to 
find the adjusted coordinates, and the 
results were accepted at the significance 
level of 0.99 in the estimated factor 
variance test. The success of single point 
analysis, robust estimation, and 

combinatorial search methods are 
compared. In each epoch, 108 observa-
tions were collected. The parameter vector 
consists of 27 unknowns and 3 datum de-
fects. The achieved results are given in ta-
ble 5.  
 

Table 5. The GCT test to confirm the displacement 
between two epochs 

Situation 
Fisher 

(α=0.025, 
β=20) 

Tୋ 
(Third 
case) 

Tୋ 
(Second 

case) 

Tୋ 
(First 
case) 

There is 
the dis-

placement 
between 

two 
epochs 

1.76 59.73 129.5 115.4 

 

 Localization  
 In the first step, point 5 is displaced, and 
calculated the success rate of each 
method. Then, points 5 and 6 are dis-
placed. In every step, one point is added 
until at last 5 points are displaced. The 
success rate and the unstable points for 
different cases are presented in diagrams 
Figs. 3-5: 
 

Figure 3. The success rate of different methods 
of the simulated GNSS data (Case #1) 

Figure 4. The success rate of different methods 
of the simulated GNSS data (Case #2). 
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Figure 5. The success rate of different methods 
of the simulated GNSS data (Case #3) 
 

 Determination of point defor-
mation 
After the identification of all unstable and 
stable points, the final task is now to de-
termine the deformations and their stand-
ard deviations. The network analysis is re-
peated. The stable points are now consid-
ered fixed points, and the estimated defor-
mation is presented in Tables 6-8. A Sum-
mary of the cases and methods is given in 
Table 9. 
 
Table 6. Estimated displacement of the simulated 
 GNSS observations in meters (Case #1) 

 First case 
Point ΔX ΔY ΔZ Norm 

5 0.337 0.166 0.748 0.837 
6 0.162 0.602 0.450 0.769 
7 0.794 0.263 0.083 0.841 
8 0.311 0.654 0.229 0.76 
9 0.529 0.689 0.913 1.26 

 
Table 7. Estimated displacement of the simulated 
GNSS observations in meters (Case #2) 

 Second case 
Point ΔX ΔY ΔZ Norm 

5 0.015 0.044 0.082 0.094 
6 0.083 0.01 0.087 0.120 
7 0.054 0.097 0.008 0.111 
8 0.1 0.001 0.04 0.107 
9 0.008 0.077 0.026 0.082 

 
Table 8. Estimated displacement of the simulated 
 GNSS observations in meters (Case #3) 

 Third case 
Point ΔX ΔY ΔZ Norm 

5 0.008 0.001 0.001 0.008 
6 0.004 0.001 0.009 0.01 
7 0.009 0.009 0.006 0.014 
8 0.002 0.006 0.004 0.007 
9 0.002 0.005 0.005 0.008 

 

Table 9. Summary of statistics for combined re-
adjustment of epochs 

 
Case 
#1 

Case 
#2 

Case 
#3 

Number of points 
in the network 

9 9 9 

Number of obser-
vations 

216 216 216 

Number of un-
knowns 

27 27 27 

Redundancy 84 84 84 

A posteriori stand-
ard deviation 𝜎̑଴ 

0.033 0.038 0.022 

Lower boundary 
value 𝜒ௌୀ଴.଴ଶହ,௥

ଶ  in 
second-factor 
variance test 

56.813 56.813 56.813 

𝑇ி in second-
factor variance test 

91.465 68.476 59.73 

Upper boundary 
value 𝜒ௌୀ଴.ଽ଻ହ,௥

ଶ  in 
second-factor 
variance test 

117.057 117.057 117.057 

The outcome of 
the second-factor 

variance test 
pass pass pass 

 
Finally, the comparison of true and esti-
mated deformations and displacements 
should be compared to evaluate the accu-
racy of the deformation monitoring. The 
difference between the true and calculated 
displacement of simulated GNSS observa-
tions is tabulated in Table 10-12. 
 
Table 10. Difference between the true and calcu-
lated displacement in the simulated GNSS obser-
vations in meters (Case #1) 

Point e୶ e୷ e୸ 
5 0.212 0.244 0.216 
6 -0.339 -0.432 -0.384 
7 0.342 0.401 0.333 
8 1.54 3.254 -5.516 
9 0.283 0.352 0.336 

 
Table 11. Difference between the true and calcu-
lated displacement in the simulated GNSS obser-
vations in meters (Case #2) 

Point e୶ e୷ e୸ 
5 0.789 0.967 0.853 
6 -0.309 -0.403 -0.357 
7 0.085 0.081 0.061 
8 1.433 4.258 -5.818 
9 7.31 3.331 -1.436 

 
 
 

40.16
61.67 70 85 100 96.67

0
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100
150
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Table 12. Difference between the true and calcu-
lated displacement in the simulated GNSS obser-
vations in meters (Case #3) 

Point e୶ e୷ e୸ 
5 0.789 0.967 0.853 
6 -0.309 -0.403 -0.356 
7 0.085 0.0813 0.061 
8 1.433 4.258 -5.818 
9 7.31 3.331 -1.436 

 
The SATE is selected as the optimal 
method among single-point analysis meth-
ods due to the simultaneous adjustment of 
two epochs and use of two groups of ob-
servations and can detect the unstable 
points with the highest rate of accuracy. In 
the combinatorial method, an MSS using 
distance differences always could detect 
unstable points and be selected as the op-
timal method. The results of displacement 
calculation are very close to the original 
simulated values. Thus, by ensuring the 
results in the simulated data, we apply op-
timal methods to evaluate real GNSS data 
of some areas in Tehran. The type of GPS 
receiver is LEICA GRX1200+GNSS. 
 
    5.1.2 Implement the optimal method 
using real GNSS data  
These observations include nine stations 
in Tehran, that have been measured in four 
epochs. The points with the WGS84 
cartesian coordinate system are shown in 
the following tables. For this purpose, the 
optimally selected methodologies should 
be operated on real data. The coordinates 
of these epochs are: 
 
Table 13. Stations WGS84 cartesian coordinates 
of the first  
The epoch of the real GNSS observations 

# Point X (m) Y (m) Z (m) 
DA01 (1) 3225238.342 4052706.572 3712624.904 

M020 (2) 3238443.659 4060239.722 3691798.557 

M022 (3) 3247605.217 4038624.398 3707994.103 

M318 (4) 3245085.094 4050269.748 3697002.558 

M804 (5) 3221372.091 4062200.733 3705189.488 

THEN 
(6) 

3240499.215 4049740.067 3701662.681 

TMIC (7) 3234236.838 4053154.284 3703562.939 

M_10 (8) 3234478.242 4053333.42 3703078.49 

M_20 (9) 3234261.284 4053129.146 3703552.643 

 
Table 14. Stations WGS84 cartesian coordinates 
of the second  
The epoch of the real GNSS observations 

# Point X (m) Y (m) Z (m) 

DA01 (1) 3225238.342 4052706.572 3712624.904 

M020 (2) 3238443.659 4060239.722 3691798.557 

M022 (3) 3247605.217 4038624.398 3707994.103 

M318 (4) 3245085.094 4050269.748 3697002.558 

M804 (5) 3221372.091 4062200.733 3705189.488 

THEN 
(6) 

3240499.215 4049740.067 3701662.681 

TMIC (7) 3234236.838 4053154.284 3703562.939 

M_10 (8) 3234478.396 4053333.745 3703077.939 

M_20 (9) 3234261.284 4053129.146 3703552.643 

 
Table 15. Stations WGS84 cartesian coordinates 
of the third  
The epoch of the real GNSS observations 

# Point X (m) Y (m) Z (m) 

DA01 (1) 3225238.342 4052706.572 3712624.904 

M020 (2) 3238443.659 4060239.722 3691798.557 

M022 (3) 3247605.217 4038624.398 3707994.103 

M318 (4) 3245085.094 4050269.748 3697002.558 

M804 (5) 3221372.091 4062200.733 3705189.488 

THEN 
(6) 

3240499.215 4049740.067 3701662.681 

TMIC (7) 3234236.838 4053154.284 3703562.939 

M_10 (8) 3234478.413 4053333.372 3703077.953 

M_20 (9) 3234261.277 4053129.209 3703553.131 

 
Table 16. Stations WGS84 cartesian coordinates 
of the fourth  
The epoch of the real GNSS observations 

# Point X (m) Y (m) Z (m) 
DA01 (1) 3225238.342 4052706.572 3712624.904 

M020 (2) 3238443.659 4060239.722 3691798.557 

M022 (3) 3247605.217 4038624.398 3707994.103 

M318 (4) 3245085.094 4050269.748 3697002.558 

M804 (5) 3221372.091 4062200.733 3705189.488 

THEN 
(6) 

3240499.215 4049740.067 3701662.681 

TMIC (7) 3234236.838 4053154.284 3703562.939 

M_10 (8) 3234478.385 4053333.846 3703077.909 

M_20 (9) 3234261.357 4053129.479 3703552.499 

 
The network with nine stations distributed 
over the city Tehran and the Google Earth 
image as the background is illustrated in 
Fig. 6. 
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Figure 6. The network of points in google earth 

 
1. Scenario A 
In Scenario A, all epochs have the same 
coordinate system and refer to the same 
computational base with no scale change 
(Ebeling (2014)).  
 
 Results of network analyses 
First, the observations were evaluated by 
the Inner-constraint approach and ac-
cepted in the second-factor variance test in 
0.99. Second, a GCT test is performed on 
the displacement vector of the two-time 
epochs to check for the presence of 
displacements between the epochs in the 
first case. 
 
 Localization 

With the outcome of the GCT in mind, the 
next step is now to identify stable and un-
stable points. This is done with SATE and 
MSS using distance difference methods. 
The detected stable and unstable points of 
each method are presented in Table (18). 
 Determination of point defor-
mation 
After detection of all unstable and stable 
points, the final task is now to calculate the 
deformations and their standard devia-
tions. The network analysis is repeated, 
and the stable points are now considered 
known calculated points. The calculated 
deformation is presented in Tables (19-
21). A Summary of the cases and methods 
is given in Table (22). 

 
Table 17. The GCT test to confirm the displacement between two epochs 

Comment 
𝐹ఈ,ఉ (α=0.025, 

β=80) 
𝑇  (Epoch 1-4) 𝑇  (Epoch 1-3) 𝑇  (Epoch 1-2) 

There is possible displace-
ment between two epochs 

1.616 46.24 63.51 86.96 

 
Table 18. Stable/unstable points using the chosen methods 

(α=0.025 and β=20) the Fisher-distribution 
Epoch 1-4 Epoch 1-3 Epoch 1-2  

SATE 
MSS using 

distance dif-
ference 

SATE 
MSS using 

distance dif-
ference 

SATE 
MSS using 

distance dif-
ference 

Method 

1,2,3,4,5,6,7 1,2,3,4,5,6,7 1,2,3,4,5,6,7 1,2,3,4,5,6,7 1,2,3,4,5,6,7,9 1,2,3,4,5,6,7,9 Stable 
8,9 8,9 8,9 8,9 8 8 Unstable 

Table 19. Estimated deformations of network points in scenario A in meters 
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Epoch 1-2 

# Point ΔX ΔY ΔZ Norm 
Direction 

(rad) 
8 0.154 0.325 -0.552 0.659 1.128 

 
Table 20. Estimated deformations of network points in scenario A in meters 

Epoch 1-3 

# Point ΔX ΔY ΔZ Norm 
Direction 

(rad) 

8 0.171 -0.048 -0.537 0.566 -0.273 

9 -0.007 0.063 0.488 0.492 1.676 

 
Table 21. Estimated deformations of network points in scenario A in meters 

Epoch 1-4 

# Point ΔX ΔY ΔZ Norm 
Direction 

(rad) 

8 0.143 0.426 -0.582 0.735 1.246 

9 0.073 0.333 -0.144 0.370 1.355 
 

Table 22. Summary and statistics for the combined re-adjustment of the epochs 
 1st epoch 2nd epoch 

Number of points in the network 9 9 
Number of observations 87 87 
Number of unknowns 27 27 

Redundancy 63 63 
A posteriori standard deviation σ̑଴ 0.58 0.76 

Lower boundary value χ
ୗୀ଴.଴ଶହ,୰
ଶ  in second-factor variance test 39.86 39.86 

T୊ in second-factor variance test 50.16 77.25 
Upper boundary value χ

ୗୀ଴.ଽ଻ହ,୰
ଶ  in second-factor variance test 92.01 92.01 

The outcome of the second-factor variance test Pass pass 
RMSE 6.98e-06 6.96e-06 

 
2. Scenario B 
The movement of Earth’s crust causes no 
certain stable point in observations. Every 
point on the Earth, including the stable 
points, move from time to time. We sup-
pose to use the local coordinate system for 
the base epoch, and the global coordinate 
system chosen for the other epochs. In this 
regard, the 3-D Helmert transformation 
should be used (Ebeling (2014)). As we 
know, the coordinates of GPS measure-
ments are the WGS84 Cartesian coordi-
nate system. To see the real directions of 
the displacements, all WGS-84 Cartesian 
should transform to a local topocentric co-
ordinate system because the obtained di-
rections in this system are incompatible 
with directions on the physical ground. 

Thus, cartesian coordinates in the WGS-
84 coordinate system must transform the 
plane coordinate system. For this process, 
we need at least three points of known co-
ordinates in the national coordinate sys-
tem. This process requires more time and 
additional processes. As a substitution, 
cartesian coordinates in the WGS84 sys-
tem are transformed to the local topocen-
tric coordinate system with the T transfor-
mation equation (Taşçi (2008)), but this 
process is not included in this research, 
and 3-D Helmert transformation is used as 
the substitution, because in this transfor-
mation the rotation, translation, and scale 
factor can be calculated. The calculated 
coordinates that define the reference 
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frame for epochs 2-4 are listed in the ta-
bles below, and in the local system of 
epoch 1, the same approximate coordi-
nates as for the previous scenario are used, 
which are shown in Tables (23-25). The 
transformation parameters relating to the 
global and the local systems are given in 
Table (26) 
 
Table 23. Stations WGS84 cartesian coordinates 
of the second  
epoch of the real GNSS observations 

# Point X (m) Y (m) Z (m) 
DA01 (1) 6460932.675 8105310.413 7415569.323 

M020 (2) 6474138.006 8112843.571 7394742.955 

M022 (3) 6483299.574 8091228.225 7410938.518 

M318 (4) 6480779.448 8102873.587 7399946.962 

M804 (5) 6457066.421 8114804.583 7408133.90 
THEN 

(6) 
6476193.564 8102343.905 7404607.09 

TMIC (7) 6469931.181 8105758.125 7406507.349 

M_10 (8) 6470172.740 8105937.587 7406022.349 

M_20 (9) 6469955.627 8105732.987 7406497.053 

 
Table 24. Stations WGS84 cartesian coordinates 
of the third  
epoch of the real GNSS observations 

# Point X (m) Y (m) Z (m) 

DA01 (1) 6460932.675 8105310.413 7415569.323 

M020 (2) 6474138.006 8112843.571 7394742.955 

M022 (3) 6483299.574 8091228.225 7410938.518 

M318 (4) 6480779.448 8102873.587 7399946.962 

M804 (5) 6457066.421 8114804.583 7408133.9 

THEN 
(6) 

6476193.564 8102343.905 7404607.09 

TMIC (7) 6469931.181 8105758.125 7406507.349 

M_10 (8) 6470172.756 8105937.214 7406022.363 

M_20 (9) 6469955.62 8105733.05 7406497.541 

 
Table 25. Stations WGS84 cartesian coordinates 
of the fourth  
epoch of the real GNSS observations 

# Point X (m) Y (m) Z (m) 

DA01 (1) 6460932.678 8105310.412 7415569.322 

M020 (2) 6474138.008 8112843.57 7394742.955 

M022 (3) 6483299.576 8091228.224 7410938.517 

M318 (4) 6480779.45 8102873.586 7399946.961 

M804 (5) 6457066.423 8114804.582 7408133.899 

THEN 
(6) 

6476193.567 8102343.904 7404607.089 

TMIC (7) 6469931.183 8105758.124 7406507.348 

M_10 (8) 6470172.73 8105937.686 7406022.318 

M_20 (9) 6469955.70 8105733.319 7406496.909 

 
In the network analysis, the datum needs 

to be defined. This is done using an inner-
constraint approach again with the contri-
bution of all network points. After the 
global congruency testing, the localization 
step is conducted using the SATE and M-
split. Moreover, the MSS using distance-
difference cannot be applied either due to 
a change in scale existing between epochs 
(Ebeling (2014)). 
 
 Results of network analyses 
First, the observations were evaluated by 
the Inner-constraint approach and ac-
cepted in the second-factor variance test 
with a confidence level of 0.99. Second, a 
GCT test is performed on the displace-
ment vector of the two-time epochs to 
check for the presence of displacements 
between the epochs in the first case. 
 
 Localization 
With the outcome of the GCT in mind, the 
next step is now to identify stable and un-
stable points. This is done with SATE and 
M-split methods. The detected stable and 
unstable points of each method are pre-
sented in Table (28). A Summary of the 
cases and methods is given in Table (32). 
 
 Determination of point defor-
mation 
After the identification of all unstable and 
stable points, the final task is now to de-
termine the deformations and their stand-
ard deviations. Deformations include 
crustal movements between the time inter-
vals of the two mentioned epochs. 
(Ebeling (2014)). The network analysis is 
repeated, combining the observations of 
both epochs. 
    Scenario B shows that the 3D Helmert 
transformation can successfully on obser-
vations to get better results. The advantage 
of the transformation-based approach for 
the determination of deformations is that 
the adjusted coordinates and their singular 
cofactor matrices can directly be utilized. 
Furthermore, it can be applied in scenarios 
where different coordinate systems use. 
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While the MSS distance difference, is the 
most efficient among other methods, it 
cannot be used because of the scale 
change between two epochs (Ebeling 

(2014)). As we compare the two scenarios, 
the RMS error is lower in the transfor-
mation-based approach. 

 
Table 26. Transformation parameters relating to local and global systems 

Epoch 1-4 Epoch 1-3 Epoch 1-2 
Transformation 

parameter 

-2.26e-11 -4.83e-11 -4.84e-11 ω (rad) 

2.48e-10 -1.95e-11 -1.95e-11 φ (rad) 

-2.27e-10 5.12e-11 5.12e-11 κ (rad) 

3235691.1090 3235691.1090 3235691.1090 T୶ (m) 

4052599.7878 4052599.7877 4052599.7877 T୷ (m) 

3702940.7068 3702940.7068 3702940.7068 T୸ (m) 

1. 0000159 0.999 0.999 (λ − 1) × 10଺ 

 
Table 27. The GCT test to confirm the displacement between two epochs 

Comment 
Fisher (α=0.025, 

β=80) 
𝑇  

(Epoch 1-4) 
𝑇  

(Epoch 1-3) 
𝑇  

(Epoch 1-2) 
There is possible displace-
ment between two epochs 

1.616 1.99 2.71 6.73 

 
Table 28. The stable/unstable points using the chosen method 

(Fisher-distribution with α=0.025 and β=80) 
Epoch 1-4 Epoch 1-3 Epoch 1-2  

SATE M-split SATE M-split SATE M-split Method 
1,2,3,4,5,6,7 1,2,3,4,5,6,7 1,2,3,4,5,6,7 1,2,3,4,5,6,7 1,2,3,4,5,6,7,9 1,2,3,4,5,6,7,9 Stable 

8,9 8,9 8,9 8,9 8 8 Unstable 
 

Table 29. Estimated deformations of network points in scenario B in meters 
Epoch 1-2 

# Point ΔX ΔY ΔZ Norm 
Direction 

(rad) 
8 0.154 0.325 -0.552 0.659 1.128 

 
Table 30. Estimated deformations of network points in scenario B in meters 

Epoch 1-3 

# Point ΔX ΔY ΔZ Norm 
Direction 

(rad) 
8 0.171 -0.048 -0.537 0.566 -0.273 
9 -0.007 0.063 0.488 0.492 1.676 

 
Table 31. Estimated deformations of network points in scenario B in meters 

Epoch 1-4 

# Point ΔX ΔY ΔZ Norm 
Direction 

(rad) 
8 0.143 0.426 -0.582 0.735 1.246 
9 0.073 0.333 -0.144 0.370 1.355 
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Table 32. Summary of statistics for combined re-adjustment of epochs 

Statics First epoch 
Second 
epoch 

Number of points in the network 9 9 

Number of observations 87 87 
Number of unknowns 27 27 

Redundancy 63 63 

A posteriori standard deviation 𝜎̑଴ 0.78 0.76 

Lower boundary value 𝜒ௌୀ଴.଴ଶହ,௥
ଶ  in second-factor variance test 39.86 39.86 

𝑇ி  in second-factor variance test 50.16 77.25 

Upper boundary value 𝜒ௌୀ଴.ଽ଻ହ,௥
ଶ  in second-factor variance test 92.01 92.01 

The outcome of the second-factor variance test pass pass 
RMSE 2.04e-10 2.05e-10 

 
3. Summary and conclusion 
Deformation monitoring results are di-
rectly relevant to safety and human life. 
This process has an important role in care-
fully assessing the data to avoid wrong in-
terpretation of the displacements (Setan 
and Singh (2001)). As a result, the need 
for a network analysis arises to combine 
the several types of observation and meth-
ods in the geodetic network independent 
of choosing an instrument (Ebeling 
(2014)). 
    In the localization step, the single-point 
analysis, robust estimation, and combina-
torial search methods are operated. As a 
result of the investigation of the simulated 
data, the SATE and MSS using distance 
difference are determined as the best 
methods. These optimal methods are oper-
ated on the satellite real data. In general, 
the reason for the failure of some methods 
in detecting unstable points in the geodetic 
network, and final findings from this the-
sis can be stated as follows: 
1. Changing the confidence interval 
affects the success rate. Two different 
cases should be recognized. First, the val-
ues of α are changed with the constant val-
ues of β. As (1- β) can show the power of 
each test in evaluation, the methods can-
not compare equally. Second, the values 
of α are unchanged, with the changing val-
ues of β. By comparison of these cases, the 

values α=0.01, and β=20, get the best re-
sults. 
2. Increasing the number of unstable 
points in the network reduces the success 
rate of methods that be affected by the ge-
ometry of the network. 
3. Reducing the amount of displace-
ment, especially in methods that use dis-
placement vectors in their calculations, 
causes errors in calculations and failure to 
detect all unstable points in the network. 
4. The existence of systematic errors 
in observations can cause errors in 
calculations. At this time, robust 
estimation techniques should be used, 
which are partially resistant to 
observational errors. 
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