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 Abstract 
Updraft vertical velocity is an important dynamical quantity which is strongly related to 
storm intensity and heavy precipitation. It can be calculated by direct observations, NWP 
model, and geostationary satellites which can provide the possibility of measuring this 
quantity with high temporal resolution. This research analyzed updraft velocity based on 
six derived parameters from INSAT3-D and high temporal and spatial resolution 
simulations of WRF model in the west and southwest of Iran. The interrelationship among 
the derived variables was investigated from the immature to mature stages of convective 
cells in Mesoscale Convective Systems (MCS). Updraft velocity was calculated based on a 
theoretical framework and real observations. The was a large results discrepancy among 
the results. This finding was in company with previous studies which concluded that 
updraft velocity is the resultant of other bulk buoyancy forces and environmental variables. 
Also, the estimated updraft velocities showed a positive correlation with height. The 
authors proposed linear regression, as a parametric, and Random Forest (RF), as a non-
parametric, machine learning methods for estimation of updraft velocity based on satellite 
variables. A forward–backward method was applied to reach the best modeling in both 
methods. In linear regression modeling, the cloud-top cooling rate was the most significant 
factor, and in the RF, band difference of water vapor, thermal infrared 1, and elevation data 
had the maximum importance. Results showed that the RF could better estimate updraft 
velocity. 
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1    Introduction 
Convective clouds are one of the major 
environmental challenges with significant 
effects on many infrastructures like 
aviation. Knowledge about microphysics, 
chemistry, thermodynamics, cloud 
environment and dynamics of these 
clouds is of great help for modeling their 
behaviors. In cloud dynamics, updraft 
velocity is the main variable which 
strongly affects the intensity of 
convective storms. Few field campaigns 
studied updraft velocities in direct 
observation by aircraft like the 
“Midlatitude Continental Convective 
Clouds Experiment” MC3E (Jensen et 
al., 2016) and  most of the researches 
were limited to Numerical Weather 
Prediction (NWP) models and radar 
observations during the last decades. Xu 
and Randall (2001) analyzed the updraft 
and downdrafts of simulated tropical 
oceanic and midlatitude continental 
cumulus convections in eastern Atlantic 
and Oklahoma regions. Parodi and 
Emanuel (2009) employed WRF model 
with the assumption of radiative–
convective equilibrium in deep moist 
convection to study updraft velocity. 
Wang and Zhang (2014) used large-eddy 
simulation of four shallow convection 
cases and found that in updraft and cloud 
plumes, the buoyancy force has the major 
contribution in the lower and middle 
parts of clouds, and sub-grid transport is 
larger in the upper part of cloud; the 
mean vertical velocity is influenced by 
buoyancy forcing and sub plume 
turbulence. Yang et al. (2016) stated that 
updraft generally increases with height. 
Tian and Kuang (2016) found that 
fractional entrainment per unit height in a 
plume has a negative relationship with 
vertical velocity. Morrison (2016) studied 
the relationship between vertical velocity, 
perturbation pressure, updraft size, and 
dimensionality for cumulus clouds. Tang 
et al. (2016) investigated the seasonal and 

diurnal variability of vertical velocity 
using NWP models. Schumacher et al. 
(2015) analyzed vertical velocity of 
shallow, mid-level and deep convective 
clouds by radar observations and showed 
that convective updraft velocities have a 
positive correlation with cloud height. 
Giangrande et al. (2016) used radar wind 
profiler to study updraft velocity, area 
fraction, and mass flux profiles. They 
showed that updrafts and downdrafts 
increase in magnitude with height to mid-
levels. They also showed that stronger 
vertical velocities are significantly related 
to “convective available potential 
energy” (CAPE) and lower low–level 
moisture conditions. 

The emergence of satellite remote 
sensing provides a possibility to survey 
convective clouds with broader coverage 
around the world and with different 
variables. Polar satellites provide suitable 
spatial and spectral resolution. 
Geostationary satellites are capable of 
acquiring data in high temporal 
resolution. Therefore, it is possible to 
analyze updraft velocity based on cloud 
top-cooling rates. In spite of significant 
advances in studying convective clouds 
by satellites, few researches have been 
conducted to study updraft velocity. Luo 
et al. (2014) used A-Train satellite 
constellation observations and concluded 
that in oceanic convection in their data 
set, smaller updraft velocities were 
observed and stated that larger vertical 
velocities tend to carry larger particle 
cloud droplets to higher altitudes and 
produce heavier rainfall. Hamada and 
Takayabu (2016) analyzed the efficiency 
of linear modeling of 5-minute cloud-top 
cooling rate and cloud-top height derived 
from 3-hourly NWP simulations over the 
ocean south of Japan. Mecikalski et al. 
(2016) studied the updrafts by GOES 
super rapid scans. Regarding the different 
spatio-temporal behavior of clouds in 
different climate regimes, it is necessary 
to carry out research in other areas and 
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determine the relation between the results 
from satellite and those of NWP models.

In Iran, several studies have analyzed 
the dynamics of convective systems from 
the synoptic point of view (Ahmadi
et al., 2006; Mohammadi et al., 2012; 
Nazaripour et al., 2015). These studies 
used NWP model outputs, ground 
stations, and soundings to study the large
scale environmental issues 
the formation of convective clouds. It is 
imperative to study the updraft velocity 
of convective clouds over Iran in 
different regions to have a better 
knowledge about the dynamics of 
convective clouds. The current study 
used the advantage of high temporal and 
spatial resolution satellite data and 
followed three goals: 1) analysis of 
different band configurations to explain 
different states of convective clouds, 2) 
comparison of the proposed theoretical 
methods in literature for calculation of 
updraft velocity with real observations, 
and 3) analysis of two methods to model 
the updraft velocity based on satellite 
data.

 
 

Figure 1. Study area and weather stations in the west and southwes
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of convective clouds over Iran in 
different regions to have a better 
knowledge about the dynamics of 
convective clouds. The current study 

high temporal and 
spatial resolution satellite data and 
followed three goals: 1) analysis of 
different band configurations to explain 
different states of convective clouds, 2) 
comparison of the proposed theoretical 
methods in literature for calculation of 
updraft velocity with real observations, 
and 3) analysis of two methods to model 

locity based on satellite 

2    Study area The analysis in this research was 
conducted in the west and southwest of 
Iran (Figure 1). Case studies were 
selected from 12 to 16 April 2016 when 
most of the western and southwestern 
weather stations of Iran had recorded 
precipitation rates higher than 10 mm per 
6 hours. Selected MCSs can be classified 
as meso-β (20–200 km) type (Figure 2). 
3    Data 
Satellite data: INSAT3
geostationary satellite located in 84° East 
over the equator. It contains two sensors 
for remote sensing studies. Imager has six 
bands, and sounder has 19 channels. In 
order to analyze MCSs, two thermal 
infrared bands (TIR1 and TIR2) and 
water vapor from Imager were used. 
Also, Atmospheric Motion Vectors 
(AMV) known as IRW were used for 
automatic tracking of convective cells. 
All data were downloaded via 
http://www.mosdac.gov.in/
Meteorological & Oceanographic 
Satellite Data Archival Centre
(MOSDAC).

Study area and weather stations in the west and southwest of Iran.
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NWP model: The Weather Research 
and Forecasting (WRF) model is used for 
simulations. The WRF model is a fully 
compressible and non-hydrostatic model 
with a run-time hydrostatic option 
(Skamarock et al., 2005). The FNL data 
available every 6h at a spatial resolution 
of 1ox1o have been used to obtain initial 
and boundary conditions. In order to 
obtain a high spatial resolution grid of 4 
km spacing, three nests were defined and 
the third nest was configured according 
to the study area. Since the temporal 
resolution of the Imager data is 30 min., 
the WRF model was run with half-hourly 
history interval from 12 April to 15 April 
and the first twelve hours were regarded 
as spin-up. The Kain–Fritsch (Kain, 
2004) cumulus parameterization was 
used in two outer grids and the 
Thompson scheme (Thompson et al., 
2004) was used for modeling 
microphysics of clouds. The default 
setting for other physical parametrization 
schemes was used in the WRF model 
simulation. 

Terrain height: Digital Elevation 
Model (DEM) data were used from 
USGS via 
http://srtm.csi.cgiar.org/SELECTION/inp
utCoord.asp with 0.5 degree in the study 
area.  
4    Methodology 
4.1   Data preparation 
In order to analyze the updraft velocity, 
the following six variables were selected: 
1) TIR1 Brightness Temperature (BT), 2) 
TIR2-TIR1, 3) WV-TIR1, 4) terrain 
height from DEM, 5) atmospheric 
temperature profile calculated by the 
WRF model simulations, and 6) CAPE 
from WRF model simulations. Based on 
the weighting functions and spectral 
response functions of satellite bands, it is 
possible to measure the cloud top

temperature and cooling rate from TIR1 
band and cloud thickness from WV-TIR1 
and TIR2-TIR1 difference (Ackerman, 
1996; Ellrod, 2004; Inoue, 1987; Prata, 
1989; Schmetz et al., 1997); In the case 
of the presence of thin clouds, the TIR1 
BT from ground radiation is received. As 
long as a cloud grows, the amount of 
radiative BT of cloud top is increased in 
satellite sensor. WV also indicates BT 
emitted about 20 to 50 kPa (Soden and 
Bretherton, 1993); therefore as cloud 
evolves, their difference tends to zero and 
in the case of mature cumulonimbus 
clouds, it takes positive values.  

From Imager SGP products, TIR1, 
WV and TIR2 products were extracted 
and based on lookup tables provided 
within products; digital counts were 
converted to BT. Parallel with these 
calculations, CAPE and atmospheric 
temperature profile values were extracted 
from the WRF model outputs by the 
NCAR Command Language (NCL) 
scripts for all grid points and were 
converted to raster (by inverse distance-
weighted (IDW) interpolation method) to 
provide a continuous search space in the 
algorithm. Then, all rasters (along with 
DEM data) were clipped based on the 
study area to reduce the cost of 
computation. In the next step, ISO DATA 
unsupervised classification method was 
used to identify cloud objects in different 
growth stages in the TIR1 band. 
Experimentally, the number of classes in 
this classification algorithm was 
determined based on the range of BT in a 
scene; for BTs ranging from -35 to 0 C°, 
three classes and for -70 to 0 C°, four 
classes were selected. The output classes 
from this stage were used as cloud 
objects to be tracked from the initial to 
mature growth stages (before 
dissipation); it was checked to select 
those cloud objects which did not 
experience splitting or merging with 
other cloud objects (Figure 2). 
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 Figure 2. Four sample cloud objects which were 
tracked to their mature stages (the arrows show 
their trajectories from their initial growth stages) 
on 14th April 2016 in the southwest of Iran.  

In order to mitigate the effect of 
neighboring clouds, the mean of quintile 
of colder pixels in TIR1 and mean of 
quintile of higher band differences were 
chosen to be the representative of each 
cloud object. The mean of terrain height 
below cloud object was attributed to 
cloud object. Since CAPE is an 
environmental variable, a 50 km buffer 
was used experimentally to search the 
maximum CAPE around cloud object and 
use it as its CAPE value; such buffer 
threshold was calculated based on the 
displacements between radiosonde 
measurements and NWP model 
simulations.  In order to calculate the 
height of cloud by atmospheric 
temperature profile from the NWP 
model, the nearest grid point to the 
coolest pixel in the cloud was chosen. 

To automate the tracking process and 
extract all of the mentioned variables, the 
method proposed in Walker et al. (2012) 
was used. AMVs were used to move the 
objects in the image in the first time (t1) and make the intersection with objects in 
the second time (t2). Those cloud objects 
in t2 that had maximum overlap with the 
moved cloud objects from t1 were tagged 

and a history was made for them. Cloud 
objects were tracked to a time when their 
top cooling rate ( TIR1=TIR1 TIR1 ,tj ti 
where tj  is 30minti  ) was positive in 
the next two consecutive images. All of 
the mentioned steps were implemented 
using Python coding and ArcPy library.  
4.2   Calculation of updraft velocity  
Updraft velocity was calculated based on 
theory and real data observation. In 
theory, calculation of updraft velocity 
was based on pure parcel theory (Dutton, 
1976) from the following logic: When a 
parcel of air passes the level of free 
convection (LFC), the work W  per unit 
mass done on parcel is expressed as 
follows:  

max max max

max ,

z z z
LFC LFC LFC

z parcel env
LFC env

W F dz a dz g dzm m
T Tg dz CAPET



   

 
  
  (1) 

 
where Zmax is the altitude where the rising 
parcel does not have buoyancy and is not 
warmer than its environment any longer, is the mass density of air parcel and 
 is the density difference between the 

parcel and the environment, parcelT is the 
temperature of the parcel and envT is the 
temperature of the environment. 
Considering that when air parcel reaches 
the LFC, it has velocity gained from the 
past stages, then the kinetic energy of  the 
parcel becomes: 
 

   2 2
max

1 1 .2 2LFCmw z W mw z             (2) 
 

Assuming that the initial velocity at 
LFC is negligible and from equation (1): 
 

 2
max

W 1 w z CAPE .m 2                         (3) 
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Then 
  max 2 .w z CAPE                               (4) 
 In order to calculate real updraft 
velocities, half-hourly cloud top height 
changes were calculated from the WRF 
outputs (temperature profiles) and cloud 
top temperature from TIR1; it was 
assumed that the emitted cloud top BT 
was equal to ambient temperature, clouds 
behaved as black bodies, and atmospheric 
attenuation effects did not have 
significant effect on the emitted BT. 

In the next step, the retrieved 
velocities from theory and real 
observations were compared with each 
other. To analyze the possibility of 
modeling vertical velocity based on 
satellite and the NWP model derived 
variables, the correlation values between 
the updraft velocity and TIR1, WV-TIR1, 
TIR2-TIR1, CAPE, and DEM were 
analyzed. Then, by considering updraft 
velocity as a dependent variable, a 
multivariate regression and the Random 
Forest (RF) regression methods were 
used for modeling updraft velocity; RF, 
first proposed by Ho (1995), is 
considered as a nonlinear ensemble 
learning approach which applies multiple 
weakly correlated decision trees for 
training. Decision trees are regarded as 
expert learners. Applying bootstrapping 
technique makes them powerful in the 
reduction of high variance which exists in 
decision trees. In the RF regression, N  
regression trees are applied by N  
bootstrapped training sets and the overall 
average of answers is the final answer. 
During the process a forward–backward 
insertion of variables was applied to 
increase the accuracy of modeling. 

The accuracy of modeling was 
evaluated by cross-validation method; in 
each modeling method, out of all updraft 
velocities calculated for all time 
increments (each updraft velocity 
calculated from two consecutive satellite 

observations), one of them was 
considered for the test and the rest of the 
updraft velocities were regarded as 
training data set, then this process was 
repeated for all of the calculated updraft 
velocities; the advantage of such cross 
validation-method is that the training data 
sets and the test data were changed 
dynamically and it was possible to 
include all the calculated updraft 
velocities both for training and 
evaluation. Finally, a root mean square 
error (RSME) was calculated, and the 
accuracy of both methods was compared, 
and their significant variables 
(importance of including variables) were 
identified.   
5    Results 
A total number of eighteen convective 
cells were tracked and their six variables 
were extracted every half hour. The 
evolution time of the cells from initial 
growth to mature stage varied from 2 to 
4.5 hours; the total number of satellite 
observations (time increments) for all 
eighteen cases was 119. The time series 
of the data for six variables of the 18 
convective cases are shown in Figure 3. 
Minimum and maximum values of BT in 
TIR1 were -85.55 C° and 12.63 C° 
(Figure 3a). The reason for fluctuations in 
initiation point of tracking was the 
presence of cirrus clouds which prevents 
the timely identification of immature 
cumulus clouds and resulted in a delay in 
detection of the evolution of convective 
cloud top temperatures. In fact, clouds 
were tracked from a point which had 
negative changes of TIR1. The time 
series of WV-TIR1 difference are plotted 
in Figure 3b. The changes vary between -
35.56 K and 53.34 K . Also, the changes 
of TIR2-TIR1 difference were observed 
between -1.84 K and 20.58 K (Figure 
3c). Figure 3e shows the mean terrain 
height changes below cloud objects, 
between 0 and 1800m above Mean Sea 
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Level (MSL). CAPE variability was also 
between 600.5 and 3074 J/kg 
Most of the time, CAPE showed an 
almost steady state with no trend,
in mature stages had a decreasing trend. 
Cloud top height which was calculated 
from the WRF model and satellite TIR1 
BT varied between 2335.9 and 28863 m 
above MSL (Figure 3f). In order to 
analyze the interrelationship among 
variables, their correlations were 
calculated. Figures 4a, 4d and 4g show 
 
 

Figure 3. Time series of six variables derived 
objects and 119 observations. 
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Level (MSL). CAPE variability was also  (Figure 3e). 
CAPE showed an 

steady state with no trend, while 
in mature stages had a decreasing trend. 
Cloud top height which was calculated 

and satellite TIR1 
between 2335.9 and 28863 m 

In order to 
analyze the interrelationship among 
variables, their correlations were 
calculated. Figures 4a, 4d and 4g show 

that CAPE had low correlations with 
TIR1, WV-TIR1, and 
differences. Base on time series of CAPE 
(Figure 3e), it can be concluded that 
CAPE can be regarded simply as an 
instability index and did not have a linear 
spatio–temporal relationship with cloud 
evolution state variables derived from 
satellite. DEM had -0.22 correlation with 
TIR1 (Figure 4b). This is due to the fact 
that most of the clouds were tracked in
the plain lands before reaching
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that CAPE had low correlations with 
TIR1, and TIR2-TIR1 

differences. Base on time series of CAPE 
(Figure 3e), it can be concluded that 
CAPE can be regarded simply as an 
instability index and did not have a linear 

temporal relationship with cloud 
evolution state variables derived from the 

0.22 correlation with 
TIR1 (Figure 4b). This is due to the fact 
that most of the clouds were tracked in 
the plain lands before reaching
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mountainous regions in the west and 
southwest of Iran. But from the pattern of 
scatter plots it can be concluded that 
DEM had a negative effect on TIR1 BT. 
Among satellite derived cloud evolution 
variables, TIR1, TIR2-TIR1, and WV-
TIR1 had the highest correlations (Figure 

4c). Although these variables showed 
high correlation and it is possible to 
choose one of them as an indicator of 
cloud state, it should be kept in mind that 
WV-TIR1 and TIR2-TIR1 are proxies for 
removing cirrus clouds and are indicators 
of cloud thickness. 
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Figure 4. Correlation among the six variables derived from satellite and the WRF model simulations.  
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5.1   Comparison of updraft velocities 
calculated by theory and real 
observations 
According to Equation (2), the velocity at 
Zmax is the sum of initial updraft velocity 
and the work done on a parcel from LFC 
to Zmax. Therefore, it can be regarded as 
the maximum speed of the parcel. In 
order to calculate the maximum updraft 
velocity by theory, at first the time 
increment with maximum velocity in real 
time series were found ( maxt ). Then, the 
values of CAPE in times before and after 
that time increment  ( max 30t  , maxt , 

max 30t  min) were averaged and the 
maximum values of updraft velocity were 
calculated based on equation (4) and 
were compared with the maximum 
velocity in real observed time series data. 
The histogram of real velocity 
observations is shown in Figure 5a. The 
real vertical velocity varied between 0 to 
10 1ms . Negative values can be 
attributed to dissipation of one cell and 
growth of another cell in sub pixel 
resolution which happened within time 
increments. As Figure 5b shows, the 
differences between the theoretical and 
real updraft calculations were large and 
no strong relationship was observed 
between the two obtained vertical 
velocities in each convective case. It can 
be concluded that in our data set, CAPE 
was not the only driving force of 
buoyancy and other factors affected the 
parcel updraft velocity. 
 
5.2   Updraft velocity estimation  
Modeling the updraft velocity based on 
satellite and NWP derived parameters 
demands analyzing their relation to 
updraft velocity. Scatter plots and 
correlations of changes of each parameter 
in time increments with updraft velocity 
are shown in Figure 6. Maximum 
correlation is observed for TIR1 BT (-

0.78) (Figure 6a). This shows that there is 
a significant linear relationship between 
updraft velocity and TIR1 BT. In order of 
significance, the next relationships are for 
WV-TIR1 (0.62), TIR2-TIR1 (0.38), 
DEM (0.33), and CAPE (0.08), 
respectively (Figures 6b, 6c, 6d, and 6e). 
CAPE scatter plot shows a constant linear 
behavior along with horizontal axis. This 
shows that CAPE did not have significant 
changes in comparison with updraft 
velocity changes. Figure 6f shows the 
trend of vertical velocity with altitude; it 
demonstrates that they have a positive 
correlation and vertical velocity was 
increased by increasing altitude.  

 (a) 

 (b) 
Figure 5. (a) Histogram of maximum real vertical 
velocities in whole tracking time of 18 cloud 
objects and (b) comparison of real and 
theoretically-derived maximum updraft velocities 
in the whole tracking time of 18 cloud objects. 
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Figure 6. Scatter plots and correlations of updraft velocity with other variables.   
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model fitted to TIR1 BT time trend 
between two consecutive times: 
 

,0.0581 0.148 1 .j iw TIR                       (5) 
 
 

 (a) 
 

 (b) 
Figure 7. (a) RMSE histogram of the RF in cross 
validation, (b) RMSE histogram of linear 
regression in cross validation. 
 
 To run the RF, number of trees and 
predictors in trees should be considered. 
Determination of the number of trees is 
based on the volume of data set and 
improvement of results happen in a 
specific range. If the number of trees is 
lower and upper than a specific range, 
then performance becomes degraded 
(McGovern et al., 2011). Defining a 
suitable number of predictors is also 
important. If all predictors in a tree are 

selected, then the decision tree method is 
called Bootstrap Aggregation or Bagging. 
In RF, the number of predictors is 
decreased to reduce the correlation 
among the decision trees. The number of 
trees was chosen between 5 and 50. The 
results showed that based on the data set, 
number of trees between 10 and 20 could 
provide more accurate results. The 
number of predictors was chosen as the 
square of the total number of predictors 
based on James et al. (2013). Application 
of the forward–backward procedure in 
the RF method showed WV-TIR1, 
TIR1and DEM had the highest 
importance, respectively. Removal of one 
of these parameters or adding TIR2-TIR1 
increases the RMSE. The RF results 
performed better in cross-validation 
procedure. The RMSE of the RF cross 
validation was 0.83 1ms (Figure 7a). 
This shows that since the variables had a 
dynamic variability in different 
conditions, a nonlinear machine learning 
method could provide better results. 
 
6    Discussion 
To analyze vertical velocity in convective 
cells in MCSs, six variables were 
defined: 1) TIR1 BT, 2) TIR2-TIR1, 3) 
WV-TIR1, 4) terrain height from DEM, 
5) atmospheric temperature profile, and 
6) CAPE. Analysis of TIR1 BT time 
series showed that cloud evolution from 
immature to mature did not have a 
constant cooling rate and in some cases a 
delay may happen. Therefore, clouds 
were tracked from a point which had a 
constant cooling rate. Cirrus clouds are 
also major limitations in detection of 
immature cells. For these two reasons, 
the cloud tracking time series range is 
reduced. Correlation among the six 
variables showed high values for TIR1, 
WV-TIR1 and TIR2-TIR1. It was 
outlined that although they had high 
correlations, WV-TIR1 and TIR2-TIR1 
have the ability to be used as a proxy for 

RMSE = 1.3288 

 

RMSE = 0.83115 
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cirrus cloud masking in cloud 
classification step. Time series plots and 
correlations of CAPE showed no linear 
relationship with three satellite derived 
variables.  Based on the data set, it can be 
stated that CAPE can be regarded only as 
a bulk buoyancy forcing which its 
changes are not necessarily involved in 
direct and abrupt changes of satellite 
derived variables. Since most cases were 
tracked in flat lands, it was very hard to 
suggest any conclusion about the 
contribution weight of terrain hight on 
updraft velocity but it may be stated that 
it is an effectvie element in cloud cooling 
rate due to orographic forcing. The 
scatter plot of updraft velocity with 
altitude showed that updraft velocity 
increased in higher altitudes. This fact 
was in company with previous studies 
(Giangrande et al., 2016; Parodi and 
Emanuel, 2009; Wang and Zhang, 2014; 
Xu and Randall, 2001). Comparison of 
updraft velocities from the theoretical 
framework and real observations showed 
large discrepancies. The estimated 
velocities based on CAPE were between 
38 and 77 ms-1 wherease real observation 
velocities were between 0 and 10 ms-1 
This was in line with recent studies 
confirming that along with CAPE, other 
bulk parameters such as deep 
tropospheric wind shear and 
environmental variables such as vertical 
distribution of buoyancy, mixed layer and 
moist layer depths, environmental 
temperature, temperature at the cloud 
base, height of LFC, vertical distribution 
of buoyancy, and terminal velocity of 
raindrops affect updraft velocity 
(Adlerman and Droegemeier, 2005; 
Cohen and McCaul Jr, 2006; Kirkpatrick 
et al., 2009; McCaul Jr  and Cohen, 2002; 
McCaul Jr et al., 2005; McCaul Jr and 
Weisman, 1996; Parodi and Emanuel, 
2009; Weisman and Klemp, 1982, 1984). 
Therefore, it can be stated that vertical 
velocity is resultant of many parameters 
but since it is manifested as cooling rate 

in satellite images, it is possible to 
measure it by satellite derived signatures. 
A multilinear regression was fitted and a 
forward–backward variable insertion was 
applied. The RMSEs derived from cross 
validation showed that only TIR1 BT 
could represent lower RMSE results. The 
RF, as a nonlinear machine learning 
method, was employed and the results 
showed better accuracy. This suggests the 
nonlinear relationship among variables 
should be considered. Based on the RF 
results, the important variables for 
updraft velocity estimation were 
identified as WV-TIR1, TIR1, and DEM, 
respectively.   
7    Conclusions 
Updraft vertical velocity of convective 
cells was estimated by employing high 
spatial and temporal resolution NWP 
model outputs and INSAT3-D data and 
the theoretical framework presented in 
the literature. The results showed that the 
theoretical framework for estimation of 
updraft velocity had large errors and 
along with CAPE other bulk buoyancy 
forcings and environmental parameters 
affect vertical velocity. The estimated 
range of updraft velocities for the applied 
data set was between 0 to 10 1ms  which 
was positively correlated with height. 
This research proposed two methods for 
fast updraft velocity estimation to study 
MCSs: 1) linear regression by cloud 
cooling rate;  2) RF by WV-TIR1, TIR1, 
and DEM. The results also showed that 
the linear relationship had lower 
estimation accuracy and the nonlinear 
machine learning algorithms can better 
estimate the output. By applying more 
case studies in future in other parts of 
Iran, it is possible to provide more 
training sets and improve the accuracy of 
updraft velocity estimation. Also, The 
recent repositioning of Meteosat-8 over 
Indian Ocean provides a higher spectral 
and temporal resolution for studying 
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convective cloud dynamics. A 
comprehensive research is needed in 
future to analyze and calibrate satellite 
cloud products like cloud top pressure 
and cloud base height with NWP model 
and ground observations to study the 
dynamics of convective cells with 
different updraft mechanisms.  
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