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Abstract 

Surface nuclear magnetic resonance (surface-NMR) method is a well-known tool for 
determining the water-bearing layers and subsurface resistivity structure. Harmonic 
interference is an inevitable interference in surface-NMR measurements. Accurate 
estimation of harmonic interference parameters (i.e., fundamental frequency, phase and 
amplitude) leads to better retrieval of power-line harmonics and consequently, more 
effective suppression of harmonics from surface-NMR recordings. To that end, two 
algorithms are addressed for isolation and then subtraction of harmonic interfering noise 
based on modeling of power-line harmonics by a modified version of Nyman-Gaiser 
estimation (NGE) and residual signal power (RSP) technique. Then, the results derived 
from the proposed algorithms are analyzed and compared through the modeling of some 
synthetic signals embedded in simulated noise and real recordings obtained from multi-
channel surface-NMR measurements. The numerical experiments on simulated and real 
surface-NMR signals show that the application of the proposed procedures results in 
significant decline of the level of the standard deviation of imaginary part of the detected 
signal and consequently, relatively accurate recovery of the harmonic signal components 
with an accompanying enhancement in estimation of the surface-NMR signal parameters. 
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1     Introduction 

Contrary to other geophysical tools the 
surface nuclear magnetic resonance 
(surface-NMR) method, due to the direct 
sensitivity to the underground water 
molecules, provides significant 
information regarding the distribution of 
water content in the shallow subsurface 
and, to a much lesser extent, pore 
geometry and hydraulic conductivity. 
Despite the exclusive properties of the 
surface-NMR method, it is strongly 
affected by the presence of ambient 
electromagnetic interferences, i.e., 
power-line harmonics, so that estimation 
of the signal parameters prior to the noise 
removal process may lead to inaccurate 
calculation of the petro-physical 
parameters of the aquifer. Surface-NMR, 
also called magnetic resonance sounding 
(MRS), energizes the nuclei of the 
hydrogen atoms of water molecules (i.e. 
protons) in the subsurface by transmitting 
a resonance EM pulse, and then the 
energized protons generate a secondary 
magnetic resonance signal after the 
excitation pulse is switched off. The 
signal response of the hydrogen nuclei 
which is an exponentially decaying 
function of time resonates at the proton 
Larmor frequency with signal phase. As 
for most geophysical measurements, 
surface-NMR data are frequently 
corrupted by various types of noise. It is 
well-known that the surface-NMR is 
affected by two environmental 
electromagnetic noise sources including 
power-line harmonics and noise spikes. 
Harmonic interference is complicated by 
time-varying nature of the fundamental 
frequency and harmonic content as well 
as the varying characteristics across 
different power grids. Harmonic 
interfering noises have more destructive 
contribution among other noises 
presented in surface-NMR 
measurements. The weakness of the 
recorded signal causes the measurements 
to be intensely noise corrupted, and 

hence, robust and effective noise 
attenuation schemes are required in order 
to preserve the signal of interest, which 
leads eventually to an increase in the 
accuracy of the parameter estimation.  

Whereas signal processing is an 
integral part of getting MRS sounding 
with an acceptable signal to noise ratio, 
to date, great efforts have been devoted to 
developing surface-NMR noise 
attenuation methods in terms of single- 
and multi-channel systems. For instance, 
the application of block subtraction, 
sinusoid subtraction and notch filtering 
methods to the single-channel data for 
suppression of power-line harmonics 
proposed by Legchenko and Valla 
(2003). They proved that the notch 
filtering was the most drastic, but it may 
pervert the signal of interest, and this 
distortion increases when the signal 
frequency is close to one of the parasitic 
harmonics (less than 8 Hz). The advent of 
multi-channel systems (Walsh, 2008), the 
second generation of surface-NMR 
instruments, allows to use advanced 
processing techniques and it is possible to 
overcome the defects from the single-
channel based surface-NMR filtering 
methods (see Müller-Petke & Costabel, 
2014; Larsen et al., 2014; Costabel and 
Müller-Petke, 2014; Ghanati et al., 2014, 
Ghanati and Fallahsafari, 2015). Using 
the multi-channel measurements, an 
improvement in estimation of the MRS 
signal parameter was achieved through 
Wiener filtering and adaptive noise 
cancellation (Dalgaard et al., 2012). The 
results from the study showed that the 
two procedures provided the same noise 
cancelling performance. 

In this paper, the estimation of 
harmonic interference parameters of 
surface-NMR signal is treated using two 
harmonic noise cancellation methods 
(i.e., modified Nyman-Gaiser estimation 
(MNGE) and residual signal power 
(RSP)) with special emphasis on the 
cases when one power-line harmonic 
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frequency is close to the signal frequency 
(Larmor frequency). It should be noted 
that the major difference between the 
proposed methodologies is in the 
estimation approach of the fundamental 
frequency so that the better the 
fundamental frequency estimation, the 
more accurate the harmonics’ retrieval 
will be. After power-line harmonic 
interference cancelling, the parameters of 
the processed signal can be derived by 
the envelope detection process, including 
signal extraction using a novel method 
called digital quadrature detection with 
additional phase correction (Ghanati et 
al., 2016b) and the estimate of the 
surface-NMR signal parameters (i.e., 
relaxation time �� , initial amplitude ��, 
Larmor frequency �� and phase ��). The 
rest of the paper is organized as follows: 
In section 1, the theory of the proposed 
approaches is developed. The 
functionalities of the proposed schemes 
are dealt with through synthetic signal 
corrupted by noise and a real data set in 
section 3, and the last section is devoted 
to some concluding remarks. 
 
2     Theory 

In what follows, a detailed description of 
the MNGE and RSP algorithms is 
presented for understanding the 
performance of the proposed methods in 
surface-NMR processing. 
 
2.1   Modified Nyman-Gaiser Estimation 

method 

The proposed method is an extended 
version of Nyman-Gaiser estimation 
(Nyman and Gaiser, 1983) for 
suppressing power-line noise in the 
surface-NMR recordings (Saucier et al., 
2006). This technique involves 
subtracting an estimation of the harmonic 
component without distorting or 
enervating the signal of interest. Nyman 
& Gaiser (1983) demonstrated that it is 
possible to eliminate harmonic interfering 

noise by modeling the noise as a sum of 
stationary sinusoids and then subtracting 
them from each trace. Their technique 
includes finding a refined fundamental 
frequency and then sequentially finding 
phase and amplitude for each harmonic 
component through Fourier analysis of 
time series. 

A recorded surface-NMR signal �(�) 
can be represented by the following 
model: 
 

,n n n nV E P                                       (1) 
 

where �� is the ideal surface-NMR signal 
from the subsurface protons defined as: 
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where �� is the initial amplitude, ��  
denotes decay time of the FID signal and 
�� indicates the Larmor frequency, �� is 
the phase offset of the signal, and  �� is 
the power-line interference, �� is the 
non-harmonic noise (i.e., spiky events 
and Gaussian noise), and � is the time 
index. �� consists of a set of harmonic 
sinusoidal components with unknown 
frequencies, phases and amplitudes as: 
 

 

   

0

1

1

0 0

1

cos Θ

cos sin ,

M

k k

k
M

k

k
M

k k

k

P C k n

P

a k n b k n



 







 



 







       (3) 

 

where �� = 2���/��, �� and �� are the 
harmonic signal (or fundamental 
frequency) and sampling frequencies, 
respectively, and the amplitude and phase 
of the ��� harmonic are denoted by �� 
and Θ�, respectively, and � indicates the 
number of harmonics presented in the 
interference. An appropriate harmonic 
interference elimination algorithm should 
remove the interference �, while 
preserving the free induction decay signal 
�. Note that the amplitude, phase and 
frequency of all harmonics are assumed 
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to remain constant over the length of the 
record. This assumption is generally 
reasonable for record lengths of a few 
seconds or less (Butler & Russell, 1993; 
Larsen et al., 2014). Whereas the 
maximum signal length, which is 
recorded by the surface-NMR 
instruments is less than 1 s, the above 
assumption is accepted as being valid for 
the surface-NMR measurements (Ghanati 
et al., 2016b).  

The harmonic noise � given by 
Equation (3) may also be written in this 
form: 
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where �� = �� cos(Θ�) and �� =
�� sin(Θ�). Putting Equation (4) into 

Equation (4), the following equation will 
be resulted. Note that the term � is 
neglected for simplicity. 
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The recent equation can be written as 
a system of linear equation: � = �� + �, 
where � = (��(�), ��(�), … , ��(�))

�, 
� = (��, ��, … , ��, ��)�, � =
(��, ��, … , ��)

�, and � is an � × 2� 
matrix with ��,���� = cos	(����), 
��,�� = sin(����) for � = 1,2, … ,�, 
� = 1,2,3, … ,2�. If � is assumed to have 
Gaussian distribution, the maximum 

likely estimator of � is ��� where �� is the 
standard least-squares solution and 
hence: 
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For a certain value of the fundamental 

frequency ��, an estimator �� of the 
amplitude � can be computed by 
minimizing the above cost function. 

Based on the NGE methodology, 
frequency �� is known to be 
approximately equal to �� =50 Hz to 
estimate the amplitude and phase. 
Considering an initial guess �� of ��, 
NGE generates an estimate �� of the 
fundamental frequency shift � as: 
 

0 . nf f δ                                          (7) 
 

Once �� is achieved, the frequency 
estimate is revised with ��

��� = ��
� + ��, 

where � is the number of iteration, and 
this value is used as a starting value for 
the next iteration. The optimization 
process is continued until the 

convergence of �� is achieved. The NGE 
algorithm estimates each harmonic 
separately, leading to a collection 

(���, ���, … , ���) of harmonic frequency 
estimates. Whereas these frequencies �� 
are related to each other by �� =
���	(� = 1,2, … ,�), it is possible to use 
a linear combination of the estimates 

���, ���, … , ��� to construct a single lower 
variance estimator of the fundamental 
frequency ��.  

The proposed method is based on the 
Nyman and Gaiser’s estimation variables 
defined as (discrete form of the 
corresponding equations): 
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where � is signal duration and � =
1, 2, … ,�. The above estimation 
variables are used to construct an 
estimator of the ��� harmonic. Note that 
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the amplitude �� and phase Θ� of the ��� 
harmonic are estimated using the 
variables �� and ��, respectively. The 
variables �� and �� allow the estimation 
of the frequency shift � = �� ��. Using 
Equation (8) a collection of � estimators 
of ��� of � is expressed as follows: 
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Equation (9) defines one estimator of 
� for each harmonic of the fundamental 
frequency. It can be proved that ��� are 
unbiased estimators of �. 

The estimators of ��� and Θ�� of �� and 
Θ� are also represented by: 
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In the statistical context, an optimum 
estimator needs to be unbiased; meaning 
that on the average, the estimator will 
yield the true value of the unknown 
parameter, and minimizes the variance 
criterion (Kay, 1993). Such an estimator 
is called the minimum variance unbiased 
(MVU) estimator. The determination of 
the MVU estimator is in general a 
difficult task because it often occurs in 
practice the MVU estimator, if it exists, 
cannot be found. For instance, nobody 
may know the probability density 
function (PDF) of the data or even be 
willing to assume a model for it. In this 
case, even some methods that take 
advantage of the Cramer-Rao lower 
bound (Kay, 1993), which is a lower 
bound on the variance of any unbiased 
estimator, and the theory of sufficient 
statistics (Fisher, 1922) cannot be 

applied. Faced with our inability to 
determine the optimal MVU estimator, it 
is reasonable to resort to a suboptimal 
estimator. However, if the variance of the 
suboptimal estimator can be ascertained, 
and if it meets our system properties, then 
its use may be justified as being adequate 
for the problem at hand. If its variance is 
too large, then it is needed to consider 
other suboptimal estimators to detect one 
that meets the specifications. A common 
practice is to limit the estimator to be 
linear in the data and find the linear 
estimator that is unbiased and has 
minimum variance. This estimator is 
termed the best linear unbiased estimator 
(BLUE) and can be determined without 
complete knowledge of the PDF of the 
data (Kay, 1993).  

Saucier et al. (2006) demonstrated that 
the BLUE can be used to develop a single 
estimator for the error in the initial 
estimate of the fundamental frequency. 
This single estimator combines all the 

estimates for the frequency shifts ��� and 
amplitudes for each of the harmonics. 

Whereas the variables ��� are 
uncorrelated, which is the consequence of 
the orthogonality of the estimation 
variables (Equation (8)), according to 
Saucier et al. (2006) for mutually 
uncorrelated variables, the BLUE takes 
the form as: 
 

21

21

,
1

M
k

k
k

M

k
k



















                                      (11) 

 

where ��
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defined as (the readers are referred to 
Saucier et al. (2006), for more details 
about determination of variance of 
estimation variables): 
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where �� is the white process variance. 
Substituting the recent equation into 
Equation (17), the BLUE takes the 
following form: 
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2.1.1  Algorithm implementation 

First, the estimation variables for 
� = 1,2, … ,� are calculated with the 
discrete form of  Equation (8) using the 
initial angular-frequency estimates 
�� = �2���/��. Then the frequency 
shifts ��� are determined using Equation 
(9). The amplitudes is then computed 
with the help of Equation (10a), and the 
results are used in Equation (13) to obtain 

the angular-frequency shift estimate ��. 
Afterwards, �� is used to revise the initial 
angular-frequency estimate with �	�

��� =

�� + ��. The optimization process is 
continued with this new angular-
frequency estimate until � converges. 
Once � is calculated, the amplitude 
estimation problem is implemented using 
the cost function given by Equation (6) so 
that the final amplitudes obtained by 
using Equation (6) are more accurate than 
those of Equation (10). Note that the 
convergence rate associated with the 
proposed method is relatively faster than 
the NGE algorithm so that the 
convergence of the proposed method is 
usually achieved with less than six 
iterations. In the following, a 
deterministic method based on residual 
signal power are demonstrated. 
 
2.2   Residual signal power  

The residual signal power method is 
carried out by modeling the harmonics 
through the estimation of the harmonic 
components (i.e., fundamental frequency 
��, amplitude �� and phase Θ�) (Larsen 
et al., 2014). The RSP algorithm consists 

of two steps where the fitting of �� and 
Θ� is a linear optimization problem, and 
the fitting of �� is a non-linear problem. 
The fundamental frequency �� is 
determined at the first stage, and at the 
second stage using �� derived from the 
previous step, the parameters �� and Θ� 
are calculated through Equation (6). In 
contrast to the MNGE method, in the 
recent proposed scheme, a search of the 
optimum fundamental frequency is 
performed using the modeling of 
harmonics through frequencies varying 
with sequential steps around 50 Hz. The 
modeled harmonics based on the assumed 
values of the fundamental frequency are 
subtracted from the recorded signal so 
that the assumed value of ��  resulting in 
the minimum residual power signal is 
chosen as the true fundamental 
frequency. After the estimation of the 
fundamental frequency, the amplitudes 
and phases associated to each of 
harmonics are modeled using Equation 
(6). It should be noted that in RSP all 
harmonics are removed, except for the 
harmonic close to the Larmor frequency, 
on the whole time-series. Then, 
amplitude and phase of the excluded 
harmonic are calculated based on fitting 
the model of the corresponding harmonic, 
the last 500 ms of the time-series and 
extrapolating to the first 500 ms. 
Subsequently, the model parameters of 
the harmonic adjacent to the Larmor 
frequency are estimated using the last 
part of the FID signal where the MRS 
signal is vanishingly small. Figure 1 
illustrates the residual signal power 
associated to an assumed range of 
fundamental frequency �� between 49.8 
Hz and 50.8 Hz after modeling of a 
synthetic surface-NMR corrupted by a 
real noise recording and removal of 
parasitic harmonics. It can be seen that 
choosing fundamental frequency equal to 
50.03 gives best removal of harmonic 
components. Furthermore, the minimum 
RSP can be determined to within roughly 
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1 mHz, and deviation of the estimated 
fundamental frequency of just a few mHz 
from the optimum value will affect the 
noise cancelling efficiency of the RSP 
algorithm. 
 

 
 

Figure 1. Representation of the residual signal 
power after modeling and cancellation of 
harmonics at the resumed fundamental 
frequencies. Choosing fundamental frequency 
equal to 50.03 gives minimum residual signal 
power, and consequently, best removal of 
harmonic components. 

 
3     Numerical experiments 

In this section, the proposed filtering 
algorithms are applied to synthetic 
surface-NMR signal contaminated with 
simulated noise and real surface-NMR 
signal. Two metrics in terms of signal-to-
noise ratio improvement and mean 
absolute percentage error (MAPE) are 
used to quantify the quality of the 
retrieved signal. Mathematically, MAPE 
is expressed as:  
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where S�(t�) is the reconstructed signal 
(the processed and stacked signal), and 
S(ti) is the ideal signal. 

It should be noted that after filtering 
and before estimation of the signal 
parameters, signal detection is carried out 
using the digital quadrature detection 
with phase correction (DQDp) to extract 
the surface-NMR signal envelope. The 

DQDp process is implemented through 
the following four stages: 

1) Multiplication of the FID signal S(t) 
by �(�������) 

2) The phase correction done by 
multiplying the complex signal, obtained 
from the previous step, with �(���) 

3) Implementation of a low-pass filter 
for further enhancement of the signal-to-
noise ratio. 

Here, �� denotes the frequency of the 
excitation signal and � is the phase offset 
of the signal defined as (see Appendix A 
for more details): 
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The application of the DQDp scheme 
leads to two signals, one in phase (real 
part) and one in out-of-phase (imaginary 
part) where the real part of the signal is 
composed of noise and the FID, while the 
imaginary part includes only noise 
components (Neyer, 2010; Müller-Petke 
et al., 2011). Hence, the real part is used 
for mono-exponential fitting. Note that 
after signal detection, the imaginary part 
merely contains noise, and thus, it 
(standard deviation of the imaginary 
part), as will be shown later, is used to 
measure the noise level of the processed 
signal (i.e., real part). In general, 
decreasing the standard deviation of the 
imaginary part means a better removal of 
power-line harmonics. Subsequently, in 
order to estimate the signal parameters 
including initial amplitude, signal 
frequency, phase, and relaxation time, a 
non-linear inverse problem based on the 
regularized Levenberg–Marquardt 
method (Chavent, 2009) is used. 
 
3.1   Application to simulated surface-

NMR signal 

In this subsection, the performance of the 
proposed harmonic mitigation methods 



20                                                              Ghanati and Hafizi                     Iranian Journal of Geophysics, 2018 

are tested using synthetic modeling with 
known parameters. Two surface-NMR 
signals are simulated through Equation 
(2) with the parameters defined in Table 
1. Then, the corresponding signals are 
corrupted by Gaussian noise with a 
standard deviation of 110 nV and zero 
mean and harmonic signals with 
frequencies starting at 1800 to 2250 Hz 
and the amplitude of each harmonic is 
randomly chosen between 120 nV and 
200 nV. The numerical procedure is 
repeated 20 times to generate both the 
first signal and the second signal. Figures 
2(a) and (b) show the resulting simulated 
signals for one single record associated to 
signal 1 and signal 2, respectively. 
Furthermore, the power spectral density 
(PSD) of noise free ( green curve) and 
noise added ( grey curve) signals 1 and 2 
is plotted in Figures 2(c) and (d), 
respectively. Referring to Figure 2, it can 
be observed that the surface-NMR signals 
are completely masked by 
electromagnetic noise and consequently 
the decaying exponential form is not 
observable, as well as the Larmor 
frequencies associated to signals 1 and 2 
appear close to one of the harmonics, 
which makes noise cancellation more 
difficult, particularly for signal 1. As 
mentioned earlier, the difference between 
MNGE and RSP is in estimation of the 
fundamental frequency so that the 
process of optimum selection of the 
fundamental frequency in MNGE and 
RSP is carried out using a statistical 
optimization problem and non-linear 
problem, respectively. The envelopes of 
the resulting signals obtained from the 
proposed filtering algorithms and merely 
use of pure stacking in the time and 
frequency domains are shown in Figure 3 
where after the application of the 

algorithms, the harmonic signals are 
adequately suppressed and the decaying 
exponential form is easily observable. 
From Figures 3(e) and (f), it is also seen 
that merely using of pure stacking fail to 
adequately eliminate the harmonics while 
the application of the MNGE and RSP 
schemes leads to significant removal of 
harmonic signals. Likewise, 
representative results from the proposed 
filtering strategies (i.e., pure stacking, 
MNGE and RSP) to retrieve the MRS 
signal parameters are shown in Table 2. It 
is noteworthy that the efficiency of the 
proposed filtering schemes is determined 
using the level of the standard deviation 
of the imaginary part of the detected 
signal containing merely noise. With 
reference to Table 2 it is seen that after 
the implementation of the proposed 
algorithms, the values of standard 
deviation of the processed signals highly 
decreases, and a close agreement is found 
between the estimated and assumed 
model parameters. One can also see that 
the difference between the results 
obtained using the RSP method and that 
of MNGE is trivial in terms of the values 
of MAPE and standard deviation. Note 
that the standard deviation of the 
estimated signal parameters are derived 
from 10 independent runs of signal 
creations. 
 
Table 1. Assumed parameters for synthetic 
signals 1 and 2 contaminated with simulated noise 
signals. 

                Signals  
Parameters 

Signal 1 Signal 2 

��(nV) 160 170 

�� (ms) 120 110 

��(Hz) 1905 1910 

�� (rad) 1 1.2 
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Figure 2. Simulated noise-added signals 1 and 2 in the time (top panels) and frequency (bottom panels) 
domains along with noise free signal in the frequency domain. 

 

 
Figure 3. Results of signal detection process after applying different noise cancellation strategies to signal 1 
(left column) and signal 2 (right column) corrupted by simulated noises. Green line, exponential decay curve 
defined by the fit-parameters ��  and �� obtained from MNGE (red curve) and RSP (blue curve)-based 
filtering; dot, initial amplitude of the estimated signal. 
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Table 2. Performance comparison results of MNGE and residual signal power methods implemented on 
signals 1 and 2 with initial amplitudes �� = 160 and 170 nV, relaxation times �� = 120 and 110 ms, phase 
�� = 1 and 1.1 rad, and the Larmor frequencies equal to 1905 and 1910 Hz, respectively. The resulting 
signal parameters are computed from 10 independent runs. 
 

           Methods 
Parameters 

Signal 1 Signal2 
Pure stacking MNGE a RSP b Pure stacking MNGE RSP 

��(nV) 171.58±9.89 157.96±2.87 163.37±4.06 163.37±4.06 170.71±3.07 171.73±1.29 
�� (ms) 129.19±11.24 121.83±2.5 118.15±2.65 118.15±2.65 113.23±2.6 109.29±2.12 
��(Hz) 1904.91±0.07 1906.01±0.03 1904.97±0.06 1904.97±0.06 1910.04±0.01 1909.96±0.023 
�� (rad) 0.94 1.02 0.986 0.986 1.13 1.108 
STD c 39.03±6.16 4.48±0.5 3.99±0.58 3.99±0.58 5.026±0.7 4.60±1.87 

MAPE�	[%] 17.82±2.11 4.25±2.16 3.34±2.22 3.34±2.22 7.28±3.2 3.25±2.03 
a MAPE: Mean Absolute Percentage Error, a Modified Nyman-Gaiser estimation, b Residual Signal Power, c Standard  
Deviation (associated to imaginary part of signal envelope). 

 
 
3.2   Application to real data 

In the previous subsection, a performance 
comparison of the proposed noise 
cancellation algorithms was demonstrated 
by presenting the results of implementing 
MNGE, RSP and pure stacking on two 
synthetically corrupted MRS records 
where promising results were shown in 
terms of reduction of the level of the 
standard deviation of the detected signal, 
and reasonable retrieval of the model 
parameters. In the following, the 
efficiency of the corresponding strategies 
is tested using a real surface-NMR 
record. Surface-NMR field measurements 
were carried out through the NUMISPOLY 
apparatus from Iris Instruments with 
sampling frequency of 19200 Hz and 
using a 100 m-diameter-circle loop with 
one turn. An example of the recorded 
surface-NMR signal in the time and 
frequency domains is represented in 
Figures 4(a) and (b), respectively. It is 
evident that the power spectrum is 
dominated by the power-line harmonics 
at multiples of 50 Hz. Surface-NMR is 
usually contaminated by electrical 
discharges from both natural and artificial 
sources bringing about spiky events so 
that prior to implementing harmonic 
noise cancellation methods, spiky noises 
are suppressed from surface-NMR 
measurements. However, after harmonic 
cancelation, often a number of small 
spikes that were masked by the harmonic 

noises appear so that a second spike 
removal process is implemented. 
Furthermore, to improve the performance 
of the proposed algorithms, a band-pass 
of 150 Hz bandwidth is applied prior to 
the implementation of MNGE and RSP. 
It should be noted that choosing improper 
bandwidth of the band-pass filter may 
yield the elimination of a large part of the 
signal energy (Ghanati et al., 2016b). The 
envelope detected after processing by 
using MNGE (red curve) and RSP (blue 
curve) are displayed in Figures 4(c) and 
(d), respectively. Moreover, the resulting 
signals after de-noising in the frequency 
domain are depicted in Figure 4(e). 
Referring to Figure 4(e), the harmonic 
components seen in the original surface-
NMR signals are no longer observed in 
the processed signal through the proposed 
filtering methods, and the Larmor 
frequency remain unchanged while 
merely use of the stacking process fails to 
adequately eliminate power-line 
harmonics. In addition, the estimated 
parameters of the surface-NMR signal are 
provided in Table 3. As seen through the 
proposed harmonic cancellation strategies 
the level of the standard deviation of the 
imaginary part of the detected signals is 
considerably reduced compared to merely 
use of stacking process. In addition, a 
relatively close correlation can be seen 
between the estimated parameters using 
the MNGE and RSP methods. 
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Figure 4. At the top: Representation of a real single-record surface-NMR signal in a) the time and b) 
frequency domains recoded in an area with harmonic interferences. At the bottom: Results of signal detection 
process in the time domain after applying: c) MNGE (red curve) and d) RSP (blue curve) with pure stacking 
(black curve) to real surface-NMR record and in the frequency domain, (e). Green line; exponential decay 
curve defined by the fit-parameters ��  and �� obtained from MNGE- and RSP-based filtering; dot, initial 
amplitude of the estimated signal. 

 
Table 3. Performance comparison results of 
MNGE and residual signal power methods 
implemented on real surface-NMR record. 

          Methods 
Parameters 

Pure 
stacking 

MNGE a RSP b 

��(nV) 173.9 158.37 152.35 
�� (ms) 76.65 89.29 98.51 
��(Hz) 2141.12 2141.034 2140.97 
STD c 98.91 7.54 7.69 

a MAPE: Mean Absolute Percentage Error, a Modified 
Nyman-Gaiser estimation, b Residual Signal Power, 
c Standard  Deviation (associated to imaginary part of 
signal envelope). 
 
4     Conclusions 

The objective of this study was to present 
two efficient power-line harmonic noise 
cancellation techniques based on the 
modified version of Nyman-Gaiser 
estimation and residual signal power 
method. The process of retrieval of the 
parameters of harmonic signals is carried 
out in two stages: the fundamental 
frequency is first calculated using a 
statistical optimization method and signal 

power in MNGE and RSP, respectively. 
At the second stage, amplitudes and 
phases are calculated using a linear 
inverse problem in both the MNGE and 
RSP procedures. The numerical examples 
showed that the fundamental frequency 
estimation using either MNGE or RSP 
results in a reasonable agreement 
between the assumed frequency and that 
of MNGE and RSP. Furthermore, the 
application of the proposed algorithms to 
synthetic surface-NMR signal embedded 
in simulated noises and a real surface-
NMR record led to remarkable reduction 
of the standard deviation of the imaginary 
part obtained from the signal detection 
process and consequently better 
estimation of the signal parameters. 
Besides, digital quadrature detection was 
used with phase correction, which 
benefits from the advantage of the signal 
frequency sensitivity to extract the 
envelope of the FID signal. Note that the 
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estimation of the fundamental frequency, 
due to the deviation in the fundamental 
frequency generated by power-line 
generation facilities on the order of 0.03 
Hz in industrial counties and 1 Hz in 
developing countries is still a challenging 
task. 
 
References 

Butler, K. E., and Russell, R. D., 1993, 
Subtraction of power-line harmonics from 
geophysics records: Geophysics, 58, 898–903. 

Chavent, G., 2009, Nonlinear least squares for 
inverse problems, Scientific Computation: 
Theoretical foundations and step-by-step 
guide for applications: Springer, New York. 

Costabel, S., and Müller-Petke, M., 2014, 
Despiking of magnetic resonance signals in 
time and wavelet domain: Near Surface 
Geophysics, 12, 185 – 197. 

Dalgaard, E., Auken, E., and Larsen, J., 2012, 
Adaptive noise cancelling of multichannel 
magnetic resonance sounding signals: 
Geophysical Journal International, 191, 88–
100. 

Fisher, R. A., 1922, On the mathematical 
foundations of theoretical statistics: 
Philosophical Transactions of the Royal 
Society, A. 222, 309–368. 

Ghanati, R., Fallahsafari, M., and Hafizi, M. K., 
2014, Joint application of a statistical 
optimization process and Empirical Mode 
Decomposition to Magnetic Resonance 
Sounding Noise Cancellation: Journal of 
Applied Geophysics, 111, 110-120. 

Ghanati, R., Fallahsafari, M., 2015, Comment on: 
Time-based noise removal from magnetic 
resonance sounding signals' by M. Shahi, H. 
Khaloozadeh and M. K. Hafizi: International 
journal of innovative computing, information 
and control, 11(1), 387–390. 

Ghanati, R., Hafizi, M. K., and Fallahsafari, M., 
2016a, Surface nuclear magnetic resonance 
signals recovery by integration of a non-linear 
decomposition method with statistical 
analysis: Geophysical Prospecting, 64, 489–
504. 

Ghanati, R., Hafizi, M. K., Mahmoudvand, R., 
and Fallahsafari, M., 2016b, Filtering and 
parameter estimation of surface-NMR data 
using singular spectrum analysis: Journal of 
Applied Geophysics, 130, 118-130. 

Kay, S. M., 1993, Fundamentals of statistical 
signal processing, Estimation theory: Prentice-
Hall. 

Larsen, J. J., Dalgaard, E., and Auken, E., 2014, 
Noise cancelling of MRS signals combining 

model-based removal of power-line harmonics 
and multi-channel Wiener filtering: 
Geophysical Journal International, 196, 2, 
828-836. 

Legchenko, A., and Valla, P., 2003, Removal of 
power-line harmonics from proton magnetic 
resonance measurements: Journal of Applied 
Geophysics, 53, 103-120.  

Müller-Petke, M., and Costabel, S., 2014, 
Comparison and optimal parameter setting of 
reference-based harmonic noise cancellation 
in time and frequency domain for surface-
NMR: Near Surface Geophysics, 12, 199 – 
210. 

Müller-Petke, M., Dlugosch, R., and Yaramanci, 
U., 2011, Evaluation of surface nuclear 
magnetic resonance-estimated subsurface 
water content: New Journal of Physics, 13. 

Neyer, F. M., 2010, Processing of full time series, 
multichannel surface-NMR signals: M. Sc. 
thesis, ETH Zurich. 

Nyman, D. C., and Gaiser, J. E., 1983, Adaptive 
rejection of high-line contamination: 53rd 
Annual International Meeting, SEG, 
Expanded Abstracts, 321–323. 

Saucier, A., Marchant, M., and Chouteau, M., 
2006, A fast and accurate frequency 
estimation method for canceling harmonic 
noise in geophysical records: Geophysics, 71, 
V7-V18. 

Walsh, D. O., 2008, Multi-channel surface NMR 
instrumentation and soft-ware for 1D/2D 
groundwater investigations: Journal of 
Applied Geophysics, 66, 140–150. 

 

Appendix 

Signal detection using digital 

quadrature method 

The procedure described here detects the 
surface-NMR signal using digital 
quadrature detection with phase 
correction. 

Considering the surface-NMR signal 
as follows: 
 

 

 

*
0 2, ( )exp( / )

cos 2 ( ) .L

V t q V q t T

f t q 
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                  (A1)
 

 

Multiplication of V(t,q) by exp(-j2πfRt) 
gives: 
 

  ( ) ( 2 ) ,c RV t V t exp j f t  
               (A2)

 
 

and 
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using Euler's formula, we have 
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By applying a low-pass filter on Vc(t), 
we get 
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The Phase correction is implemented 
using multiplication of Vc(t) by exp(-jφ) 
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The final quadrature detection envelope 
is obtained by: 
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