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Abstract 

Recently, interpretation of causative sources using components of the gravity gradient tensor 

(GGT) has had a rapid progress. Assuming N as the structural index, components of the 

gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), 

respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational 

invariants of the GGT (I1 and I2) are homogeneous with the homogeneity degree of - (N+1), 

-2(N+1) and -3(N+1), respectively. Furthermore, the product of M homogeneous functions 

with a homogeneity degree of - (N+1) itself is homogeneous with the degree of –M(N+1), 

and their summation do not change the homogeneity degree. Therefore, the Euler 

deconvolution of these functions can be used to estimate the location and type of the source, 

simultaneously. The advantage of using Euler deconvolution of invariants compared to other 

methods that use invariants is that the only parameters involved in location approximation 

are invariants and their derivatives. Therefore, it is completely independent of the orientation 

of the coordinate system as well as having little sensitivity to random noise. In this study, 

the model is tested on synthetic models with and without noise. Finally, application of the 

method has been demonstrated on measured gravity gradient tensor data set from the 

Blatchford Lake area, Southeast of Yellowknife, Northern Canada. 
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1     Introduction 

GGT data have an important application in 

extracting more details from subsurface 

structures, especially in oil, mine and 

sulfide reservoir exploration. Many 

techniques have been designed, which use 

the components of gradient tensor and/or 

their derivatives to interpret gravity or 

magnetic anomaly sources (Mikhailov et 

al., 2007; Beiki, 2010; Oruç, 2010; Beiki 

et al., 2012; Beiki et al., 2014; Zhou, 

2016). The GGT is defined in terms of the 

second-order spatial derivatives of 

gravitational potential as follows 

(Pedersen and Rasmussen, 1990): 
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where U is the gravitational potential. Due 

to the gravity field conservation and 

displacement of differential operators, the 

tensor components are real and 

symmetric, ( ) 0xx yy zzTr g g g     . 

Therefore in a free space, the gradient 

tensor only has five independent 

components. 

The components of GGT are more 

sensitive to low wavelength anomalies 

compared to components of the gravity 

vector. The eigenvalues of GGT 

( 1,2,3)i i   could be calculated by 

solving the following characteristic 

equation (Pedersen and Rasmussen, 1990; 

Beiki et al., 2012): 
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where I1 and I2 are rotational invariants of 

GGT, which are not affected by 

coordination system rotation and any 

analytical function of them possesses this 

property as well. The components of GGT 

may be obtained via either calculation or 

direct measurement. To calculate the 

components of the gravity gradient tensor, 

the method introduced by Mickus and 

Hinojosa (2001) is used. Nevertheless, as 

the measured GGT data are now widely 

accessible with high quality, eigenvalues 

and other values such as rotational 

invariants could be directly calculated 

from the measured GGT data. Pederson 

and Rasmussen (1990) introduced scalar 

invariants in terms of GGT components, 

which can be used as a tool for enhancing 

anomalies due to their lateral resolution 

compared to the corresponding field. 

These invariants could be written as: 
 

1 xx yy yy zz xx zz

2 2 2

xy yz xz

1 2 2 3 1 3

2 2 2

1 2 3

I g g g g g g

g g g

2

     

  

  

  

  

 
 

                       (3) 

 

2

2 2 2

1 2 3

2xx yy zz xy yz xz

yz xx xz yy xy zz

I g g g g g g

g g g g g g

  

 

  



                (4) 

 

where 1 2 3    , and 2 has the lowest 

absolute value (Beiki et al., 2012). 

For 2D structures 2 0  and 1 3   , 

therefore 
2 2

1 1 3I       and I2=0. 

Nabighian (1984) introduced the 2D 

analytical signal and showed that Hilbert 

transforms of any potential field satisfy 

Cauchy-Riemann relationships. Roest et 

al. (1992) extended the analytical signal 

amplitudes of the potential field f(x, y) to 

3D: 
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By substituting each component of 

gravity vector ( ( , , )x y zg g g g ) in f(x, y), 

the directional analytical signal could be 
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obtained in x, y and z directions as follows 

(Beiki, 2010): 
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Using the Laplacian equation  

( yy zz xxg g g   ) and some algebraic 

simplification, the first rotational invariant 

( 1I ) can be obtained in terms of directional 

analytical signals as follows: 
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As could be seen from the above 

equation, this function always has a 

negative value. 

Wilson (1985) introduced an important 

quantity called normalized source strength 

in terms of eigenvalues (Clark, 2012): 
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Beiki et al. (2012) showed that the 

normalized magnetic source strength is 

independent of source magnetization 

direction. They also proved that the 

normalized source strength satisfies 

Euler’s equation and could be used to 

locate magnetic sources. Pilkington & 

Beiki (2013) presented an algorithm for 

illustration of source magnetic distribution 

using normalized source strength. 

2    An overview to Euler deconvolution 

method 

The f(r) would be a homogenous function 

with the degree of n and each real 

parameter, t, when (Reid et al., 1990; Reid 

et al., 2014): 
 

f(tr)=tn f(r)                                          (11) 
 

where r=(x1, x2,…, xk) and n is a positive 

integer. The homogeneous functions 

satisfy Euler’s differential equation. 

Therefore, 
 

r f(r)=n f(r)                                      (12) 
 

According to this definition, the 

magnetic and gravity fields resulted from 

a number of simple sources are 

homogenous functions in spatial 

coordinate. However, in practice, Euler’s 

equation could be used for sources with 

arbitrary shapes. 

Zhang et al. (2000) indicated that the 

horizontal components of gravitational 

vector in x, and y directions work as 

vertical component in homogeneous 

Euler’s equation: 
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where N is the structural index and Bx, By 

and Bz are regional anomaly parameters of 

gravity vector components in the direction 

of x, y and z, which are assumed to be 

constant. P(x,y,z) and P0 (x0,y0,z0) are the 

observed points and the source location, 

respectively. In the above equations, the 

structural index N should be determined 

by the user based on the previous 
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information. The structural index is given 

in Table 1 for some simple gravity 

sources. By differentiation of the Equation 

(13) in x, y and z, 
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where 
g
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 ( , ,x y   and z) are 

the components of GGT. These equations 

show that components gxx, gyx and gzx are 

homogeneous with homogeneity degree of 

– (N+1) (according to Equation (11), 

(N+1) should be positive). Beiki (2010) 

demonstrated for some simple sources that 

the directional analytical signals are 

homogeneous and satisfy Euler’s 

equation. It can be shown using Equations 

(13) to (15), and it is only proved for Ax. 

By multiplying the Equations (16), (17) 

and (18) to gxx, gyx and gzx respectively, and 

adding all three equations, 
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And with dividing above equation by Ax, 
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where,  
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and , , .x y z    

Through performing these steps for 

Equation (14) and (15), a similar 

expression to Equation (20) can be 

obtained for Ay and Az, 
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The above equations prove that the 

directional analytical signal in x, y and z is 

homogeneous with a homogeneity degree 

of – (N+1). The derivatives of directional 

analytical signal in x, y and z directions 

could be obtained in terms of GGT 

components and its derivatives (Beiki, 

2010). Therefore, with omitting the 

constant parameters, B, one can 

simultaneously calculate location and 

structural index using Euler’s equation. 

This paper showed that the eigenvalues 

and rotational invariants of GGT are 

homogeneous and satisfied Euler’s 

equation. While the components of GGT 

change due to their projection onto the 

base coordinate axis, the invariants are 

completely independent of the orientation 

of the coordinate system. Due to 

simultaneous use of all components of 

GGT, these quantities are less susceptible 

to random noise and better preserve the 

size and shape of the sources. Therefore, it 

is an effective way to estimate the location 
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and type of the gravity anomaly sources.  

 
3    The homogeneity of gravity gradient 

tensor eigenvalues and invariants 

Below, the homogeneity of directional 

analytical signal is used to prove that the 

first invariant (I1) of GGT is 

homogeneous. By multiplying Equations 

(19), (20) and (21) to Ax, Ay and Az 

respectively, and collecting them, 
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Therefore, according to Equation (9), it is 

obtained 
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Thus, the homogeneity degree of I1 is 

twice the homogeneity degree of 

directional analytical signals. The 

Equation (24) can be written in matrix 

form for a window with m points as 

below: 
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Table 1. Structural index (N) for different gravity 

sources (after Phillips et al., 2007). 

Gravity source Structural index (N) 

Point source (Sphere) 2 

Horizontal cylinder 1 

Thin sheet edge 0 

Contact -1 

 
The derivatives of the I1 in terms of the 

derivatives of the directional analytical 

signal are: 
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where , , .x y z   

According to the Equation (3) and 

homogeneity of the first rotational 

invariant (I1), one can see that the 

expression 2 2 2

1 2 3    is homogeneous 

as well. It is simple to prove the 

homogeneity of eigenvalues for a number 

of simple sources by applying 

relationships of Pederson and Rasmussen 

(1990). In the following, this will be 

demonstrated for the second eigenvalue 

(2) from homogeneity of invariant I1. 

Beiki et al. (2014) expanded normalized 

source strength (μ) to gravity ones and 

showed that 1
1

Nr
  . Therefore, it is 

homogeneous function with the 

homogeneity degree of - (N + 1) and 

satisfies the Euler’s equation. Therefore, 

due to homogeneity of I1 and μ, and using 

the Equation (10), 
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It means that 2 is homogeneous with 

the homogeneity degree of – (N+1). In 

addition, this could be proved for other 

eigenvalues. Therefore, the eigenvalues of 

GGT satisfy the Euler’s equation: 
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For the 2D sources, Equation (29) 

equals to zero, and Equation (28) and (30) 

give the same results. The directional 

derivatives of eigenvalues could be 

calculated in terms of invariants 

derivatives or GGT derivatives (Clark, 

2012; Beiki et al., 2012). Using Equation 

(28) to (30) it could be shown that the 

second invariant (I2) is also homogeneous, 
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Therefore, by summation of the Equations 

(31) to (33),  
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The derivatives of I2 could be 

calculated in three Cartesian directions x, 

y and z using derivatives of the expression 

introduced by Pedersen and Rasmussen 

(1990) for canonical invariants in terms of 

GGT components. The derivatives of I2 in 

terms of eigenvalues is as follows: 
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where , , .x y z   

Efficiency of the above equation loses 

for 2D sources, which I2=0.  

Pedersen and Rasmussen (1990) 

introduced the invariant ratio, I (Equation 

(A1) at appendix A), which is defined as 

the ratio of two invariants (I1 and I2). This 

quantity indicates that the causative 

source is two-dimensional or three-

dimensional. Furthermore, it is shown in 

Appendix A that invariant ratio (I) is 

homogeneous with zero homogeneity 

degree and satisfied Euler’s equation. 
To apply the Euler’s deconvolution 

method, an algorithm presented by Beiki 

et al. (2012) was used. According to their 

algorithm, a square window is formed 

with initial size, centered with the maxima 

of homogeneous function or its vertical 

derivative. Then, the data of this window 

was used to estimate the location of source 

and the structural index. The size of the 

window was increased to a specific user-

defined range.  

Then, among the set of solutions for 

different window size, a solution with the 

lowest uncertainty normalized to 

estimated parameters was selected as the 

location and structural index of the source. 

The uncertainty in the location and the 

structural index of the source could be 

calculated from the covariance matrix as 

described by Beiki (2010). An advantage 

of this algorithm is the reduction of 

computation time as well as choosing 

points with higher signal within the 

window. 

4    Application to the synthetic model 
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The efficiency of the described method is 

tested on a prism with dimensions 

300300300 m3, the top depth of 20 

meters and density contrast 1 gr/cm3. 

Figure 1a shows the 1 map for this model.  

It could be seen that the maximum of 

this eigenvalue is slightly shifted inward 

from edges of the prism. To apply Euler’s 

deconvolution method, the algorithm 

introduced by Beiki et al. (2012) was used. 

In this algorithm, the absolute value of the 

function or its vertical derivative is used 

for depth estimation in Euler’s equation. 

This study rejected the negative depths 

and unreasonable structural index (outside 

of -1N2) from Euler's solutions. For 

this model, a window of 15 m15 m was 

used centered on the maximum of 1

z




. 

Afterwards, the length of the window was 

increased as far as 

both of the edges reached to 160 m. 

Finally, the solution was selected with the 

least uncertainty normalized to calculated 

parameters in estimation of location or 

structural index (also, the negative depths 

and unreasonable structural index is 

rejected). Figure 1b shows the results of 

depth estimation for 1 function, which are 

traced with black dots on this function 

map. Figures 1c and 1d show histograms 

of depth and structural index, respectively. 

The calculated depth is very close to the 

top depth of prism, and the negative 

structural index is obtained. It shows that 

solutions over the edges are corresponding 

to the contact model. The estimated results 

cover the edges and corners very well. 

Similar to the 1, the results of depth and 

structural index estimation via Euler’s 

deconvolution of 2, I1 and I2 are 

illustrated in Figures 2 to 4, respectively. 

According to Figure 2, the estimations of 

the second eigenvalue
 

       
(a)                                                                           (b) 

       
(c)                                                              (d) 

Figure 1. (a) 1 map corresponding to a prism with dimensions of 300300300 m3 and depth to top of 20 m. 

Dashed line is outline of prism. (b) Solutions of Euler deconvolution of 1 (black circles) for the prism shown 

in (a). (c) Histogram of estimated depth and (d) histogram of structural index of the prism. 
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are located on the corners toward the 

center of the prism, and the results are very 

close to the correct values as well as the 

first eigenvalue. In this case, 2 was used 

to extract the maximum.  

The results of the first rotational 

invariant (Figure 3) show a higher 

continuity. This function always returns a 

negative value and is minimized on the 

edges. Therefore, I used 1I

z




 to extract 

the maximum. The second rotational 

invariant (I2), which is the product of three 

eigenvalues of GGT, is usually maximized 

on the edges. 2I

z




 was used to determine 

the maximum. The results of horizontal 

location for this function are exactly 

coincided on the center of edges and 

corners (Figure 4). The results of depth and 

structural index for each of these functions 

are very close to each other. 

 

        
(a)                                                       (b)                                                 (c) 

Figure 2. (a) 2 map superimposed by solutions of Euler deconvolution (black circles). (b) Histogram of 

estimated depth and (c) histogram of structural index of the prism. 

 

         
(a)                                                       (b)                                                 (c) 

Figure 3. (a) I1 map superimposed by solutions of Euler deconvolution (black circles). (b) Histogram of 

estimated depth and (c) histogram of structural index of the prism. 

       
(a)                                                       (b)                                                 (c) 

Figure 4. (a) I2 map superimposed by solutions of Euler deconvolution (black circles). (b) Histogram of 

estimated depth and (c) histogram of structural index of the prism. 
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Figure 5. 3D view of a synthetic model. 

 

5    The effect of interfering sources 

To study the sensitivity of the method to the 

interference, the model shown in Figure 5 

is used. This model consists of three bodies 

with different density contrasts and depths. 

The physical and geometrical properties 

are presented in Table 2. The Gaussian 

noise N(0, σ2) with a standard deviation of 

1 Eötvös (10% of the standard deviation of 

gzz) was added to each of GGT 

components. Then, the eigenvalues and 

rotational invariants were calculated from 

these components. Figure 6a shows the gzz 

component for this model. The Figures 6b 

and 6c show the I1 and I2, respectively. As 

shown in these figures, maxima of these 

functions are distorted with noise. 

Therefore, applying a filter to reduce the 

noise effect is essential. To reduce the 

effect of noise and prevent the selection of 

invalid maxima, upward continuation of 20 

m was applied to GGT components before 

applying Euler’s equation. The eigenvalues 

and rotational invariants were calculated 

from upward continued gradient tensor 

components. Figure 6d shows I2 after 

upward continuation of 20 m. As can be 

seen in this figure, the maxima determined 

the source location correctly. For any 

Euler’s equation, a square window with a 

size of 15 m15 m was selected as the 

starting window. Then, the window size 

was

 

     
(a)                                                                 (b) 

     
(c)                                                                 (d) 

Figure 6. (a) gzz of the model shown in Figure 5 in presence of Gaussian random noise with zero mean and 

standard deviation of 1E. (b) I1 and (c) I2 map of the model in presence of noise. (d) Invariant I2 after upward 

continuation of 20 m. 
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Table 2. Physical and geometrical properties of bodies shown in Figure 5. 

Body 
Depth to top/ center 

(m) 

Depth extent 

(m) 

Strike length 

(m) 

Thickness/ Radius 

(m) 

Density contrast 

(g/cm3) 

Sphere 200 - - 150 1.3 

Prism 50 2000 1500 75 1.25 

Pipe 20 1500 - 200 1.1 

 

 

     
(a)                                                                             (b) 

     
(c)                                                                                (d) 

Figure 7. The estimated depths of the model shown in Figure 5 from Euler deconvolution of (a) 1, (b) three 

eigenvalues (1, 2 and 3), (c) I1 and (d) I2 after upward continuation of 20 m. 

 

 

increased to the threshold size 100 m100 

m. The estimated source locations and 

structural indices for each function 

superimposed on corresponding maps in 

Figures 7 and 8, respectively. 

Figures 7a and 7b show the results of 

depth estimation for the 1 and 

considering three eigenvalues, 

respectively. As could be seen from these 

figures, the estimations of pipe exactly fall 

on its curve edges whereas in Figure 7b 

the estimations are slightly shifted inward. 

For Figure 7b, the maxima of 1

z




 was 

used in calculations. Figures 7c and 7d 

show depth estimations for I1 and I2. As 

could be seen in Figure 6d, the 2D state 

gets closer to the 3D state by approaching 

to corners of prism. As a result, the signal 

starts to increase from zero. Therefore, 

this function has lower estimates in the 

center of prism. Figure 8 shows the 

estimated structural index corresponding 

to Figure 7. The results shown in Figures 

7 and 8 are valid estimations of location 

and type of the source.  
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(a)                                                                             (b) 

    
(c)                                                                 (d) 

Figure 8. The estimated structural index of the model shown in Figure 5 from Euler deconvolution of (a) 1, 

(b) tree eigenvalues (1, 2 and 3), (c) I1 and (d) I2 after upward continuation of 20 m. 

 

 

To examine the deviation of the 

estimated parameters from the true values 

in the presence of interfering sources, two 

spheres are considered, the centers of 

which are separated by S. The spheres are 

at a depth of 100 meters, a radius of 50 

meters and a density contrast of 1gr/cm3. 

Figure 9a shows the computed analytic 

signal (AS), 1I

z




 and 2I

z




for S = Z. Each 

of these functions is normalized to its 

maximum values. As you can see from 

this figure, the function 2I

z




has a higher 

resolution than two other functions.  

Figure 9b shows the relative error of 

the calculated depth and structural index 

from true values, 100

est tru

tru

m m

m


  for 

different values of S/Z (separation-to-

depth ratio) that mest and mtru represent the 

estimated and correct parameters, 

respectively. When S=0, the estimated 

values are close to true ones because in 

this situation, the two spheres are 

indistinguishable and appear as a sphere 

with a density contrast of 2gr/cm3. By 

increasing S/Z, the relative error also 

increases, and at S = Z it reaches to its 

maximum error. For S Z, the error 

decreases and the calculated parameters 

go to true values. It should be noted that 

for this model, the error generated by the 

function I2 is lower than I1.   
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Figure 9. (a) AS, 
1I

z




and 2I

z




for two spheres located at depth Z (=100 m) and separation of S (=100), (b) 

relative error of the calculated depth (dashed blue lines) and structural index (N) (dashed black lines) from true 

values plotted versus different separation to depth (S/Z). 

 

 

 
Figure 10. Simplified regional geology setting of the Blatchford Lake area modified from Geological survey 

of Canada (2011). 
 

6    Blatchford Lake area 

The Blatchford Lake area is located in 

central Northwest Territories 

approximately 80 km southeast of 

Yellowknife (Figure 10). Birkett et al. 

(1994) show 3D modelling of the 

Blatchford Lake area, including syenite, 

both metaluminous and peralkaline 

granites, and the associated Thor Lake rare-

metal deposits. Their studies showed that 

the Blatchford Lake area is a relatively thin 

body with tabular geometry. 
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Davidson (1978, 1981 and 1982) has 

shown that the Blatchford Lake area 

divisible into two parts; the western lobe 

and the eastern lobe. The western lobe 

rocks include mafic intrusive rocks of the 

Caribou Lake Gabbro (an area of 

approximately 20 km2), syenites and 

granites. 

The composition of these rocks vary 

from olivine-gabbro-neritic to 

plagioclase-rich leucoferrodiorite from 

western contacts toward eastern contacts. 

Northwest- and east-northeast trending 

diabase dykes cut all geological units in 

the western lobe. The eastern lobe rocks, 

which are laterally more extensive and 

geometrically subcircular, consist mainly 

of Grace Lake Granite and Thor Lake 

Syenite. Diabase dykes trending 

northwest and east-northeast cut both 

Grace Lake Granite and Thor Lake 

Syenite. Grace Lake Granite, the largest 

unit of the Blatchford Lake area, underlies 

an area of 155 km2 (Davidson, 1978). Thor 

Lake Syenite occupies a roughly oval, 30 

km2 area in the center of the Grace Lake 

Granite (Figure 10). Although the Thor 

Lake Syenite consists predominantly of 

amphibole-rich (ferrorichterite) syenite, 

with an outer border zone of fayalite-

pyroxene syenite, four textural variants of 

the amphibole-bearing syenite are 

discernible in the field (Birkett et al., 

1994; Trueman et al., 1984). The contacts 

of the Caribou Lake Gabbroon the western 

margin of the Blatchford Lake complex 

are steep, as is the outer contact of the 

Grace Lake Granite in most places. 

Although gradational over distances of 

one to several meters, the contact of the 

Thor Lake Syenite with the Grace Lake 

Granite at surface also appears to-be steep. 

Some of the observed contacts of the 

Caribou Lake anorthosites with the 

granites and syenites of the western part of 

the complex, on the other hand, are 

subhorizontal. Although they are cut in 

places by vertical granitic and syenitic 

dykes, a large part of the Caribou Lake 

anorthositic rocks occupy geographically 

higher areas and appear to be underlain by 

graniticand syenitic rocks (Davidson, 

1978). 

The objective of the airborne gravity 

gradiometry surveys is to measure small 

variations in the rate of change of the 

gravity field due to lateral variations in the 

mass and density of underlying bedrock. 

The survey was flown at a nominal 

altitude of 100 m by Falcon AGG system. 

Flight lines were spaced 250 m apart with 

a flight line direction 0f 145. The raw 

gravity data are extracted and checked by 

statistical analysis for performance 

evaluation including the use of a graphic 

profile display of data plots. Post-

processing is done to remove the  

 

 
Figure 11. Gridded gzz component with cell size of 50 m over Blatchford Lake. White box shows portion of 

grid displayed subsequent figures. 
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effects of aircraft acceleration by 

modelling the acceleration of the 

gradiometer environment and removing 

sensitivities from the output (Geological 

Survey of Canada, 2011). 

The two corrected curvature 

components of the gravity tensor collected 

gxy and guv, where guv = (gxx-gyy)/2, are 

levelled using a least-squares 

minimization of differences at survey line 

intersections. Final transformation of the 

levelled data into gravity and components 

of the full gravity gradient tensor is 

accomplished using the Fourier domain 

transformation (Sanchez et al., 2005). The 

output generates all gravity tensor 

components. The flight surface on which 

the data are collected is an irregular draped 

surface.  

To make possible the transformation of 

the horizontal curvature gradients gxy and 

guv using Fourier domain potential field 

transfer functions requires that the data is 

located on a flat horizontal surface. To 

achieve this, the data are piece-wise 

upward continued to the top grazer, that is 

the peak elevation present in the flight 

surface. Following the transformation, the 

data are then moved back to a smoothed 

version of the flight surface via potential 

field continuation. The gradient data are 

demodulated and filtered along line using 

a 6-pole 

Butterworth low-pass filter with a cut-off 

frequency of 0.18 Hz. Terrain correction 

is applied to GGT data with a density of 

2670 kg/m3, based on correlation tests. 

Figure 11 shows the gridded first 

vertical derivative of the vertical 

component of the gravity vector gzz over 

the Blatchford Lake area with a cell size 

of 50 m. The white box is a portion of the 

Blatchford Lake area, which this study 

intends to apply the Euler's method to it. 

The calculated invariants I1 and I2 is 

illustrated in Figures 12a and 12b, 

respectively. As can be seen in these 

Figures, two main structures A and B 

enhanced. The minima of the I1 and 

maxima of the I2 are nicely located over 

the edges of gravity anomalies. Figures 13 

and 14 shows the solutions of depth 

structural index from Euler deconvolution 

of I1 and I2, respectively. A starting 

window of 150 m150 m is formed around 

the maxima of  1I

z




 and 2I

z




, and then the 

window size is increased until it exceeds a 

window size of 2 km2 km. Solutions 

with an unreliable structural index, a depth 

to source with negative values and high 

uncertainty of the depth estimates 

normalized by corresponding depth

 

     
(a)                                                                                 (b) 

Figure 12. (a) I1 and (b) I2 invariants calculated from measured GGT data for area in white box in Figure 10. 

A 
B 

A 
B 
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(a)                                                                           (b) 

 
(c)                                                                                (d) 

Figure 13. (a) , (b) The estimated depth from Euler deconvolution of I1 and I2 superimposed on 

corresponding maps and (c) , (d) Histogram of estimated depth from Euler deconvolution of I1 and 

I2 , respectively. 
 

(greater than 50%) are rejected. According 

to Figures 12c and 12d, most estimated 

depths are around 150 m and 250 m. For 

anomaly A, I1 shows more depth solutions 

than I2, mostly in the range of 100-250 m. 

However, for the anomaly B, the 

estimated depths are in the smaller range, 

150-220 m. The structural indices are 

mostly about (-0.8), implying that 

solutions are well located over the edges 

of gravity sources represented by 

geological contacts. 

 

7    Conclusions 

By using the components of the GGT 

simultaneously, one can calculate 

eigenvalues (1, 2 and 3) and rotational 

invariants (I1 and I2). These parameters 

play an important role in the interpretation 

of gravity gradiometry data. It is shown 

that the components of the gradient tensor 

are homogeneous and satisfy the 

homogeneous Euler’s equation. Using the 

homogeneity of these components, it is 

shown that the eigenvalues and invariants 

are also homogeneous. Therefore, they 

satisfy the Euler’s equation, and this 

enables us to estimate the location and 

structural index of the causative sources, 

simultaneously. The advantage of using 

invariants is that it is not sensitive to 

orientation errors of the measurement 

device. Vertical derivatives of invariants 

have a higher resolution than themselves. 

Therefore, the maximum of them was 

applied for using in the Euler’s equation. 

The different window sizes centered at the 

maximum of corresponding functions  
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(a)                                                                           (b) 

 
(c)                                                                                (d) 

Figure 14. (a) , (b) The estimated structural index from Euler deconvolution of I1 and I2 superimposed on 

corresponding maps and (c) , (d) Histogram of estimated structural index from Euler deconvolution of I1 and 

I2, respectively. 

 

were formed, and the Euler solution with 

the minimum uncertainty-to-calculated 

parameters were selected. 

The method to noisy and without noise 

data was applied in the presence of 

interfering sources. Furthermore, using 

two interfering spheres, the interference 

errors for different separation to depths 

were obtained. The highest relative error 

was observed for the separation distance 

equal to the depth. Application of the 

Euler deconvolution of invariants on GGT 

data from the Blatchford Lake area shows 

that mainly estimated depths of gravity 

sources are located above the edges in 

range of 100-300 m, and the estimated 

structural indices are mainly about -0.8 

corresponding well to geological contacts.  
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Appendix A 

The invariant ratio, I, is expressed by the 

following relation (Pedersen and 

Rasmussen, 1990): 

 
2

2

3

1

27
, 0 1

4

I
I I

I
                             (A1) 

 

Similar to Equation (27), it can be 

simply shown that the homogeneity 

degree is zero. It is shown here in another 
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way that the Equation (A1) satisfies the 

Euler’s equation. By differentiating from 

the Equation (A1): 
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Multiplying Equations (A2), (A3) and 

(A4) by (x-x0), (y-y0) and (z-z0), 

respectively, and using the Equations (22) 

and (32), it is obtained 
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  (A5) 

 

As can be seen, the Equation (A5) does 

not include the structural index (N). 

Therefore, using a window of data points, 

we can estimate the location of the 

causative sources. 

 


