بررسی تأثیر زمین‌لرزه بر تراز آب‌های زیرزمینی و آبدهی چاه‌های آب ناشی از زمین‌لرزه 20 فروردین‌ماه 1392 کاکی با بزرگای گشتاوری 3/6 در استان بوشهر

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانش‌آموخته ارشد، گروه ژئوفیزیک، دانشگاه خلیج فارس، بوشهر، ایران

2 استادیار،گروه ژئوفیزیک، دانشگاه خلیج فارس، بوشهر، ایران

چکیده

با وقوع زمین­لرزه، بخشی از انرژی آزاد­شده به­صورت امواج کشسان از کانون زمین­لرزه منتشر می­شود. سرعت این امواج به جنس محیط کشسان و الگوی انتشار آنها به سازوکار گسلش بستگی دارد. پاسخ محیط به امواج طولی به­صورت تراکم و انبساط محیط ظاهر می­شود. تراکم و انبساط محیط می­تواند منجر به تغییراتی در محیط انتشار امواج ازجمله تغییر در سطح تراز آب و تغییرات آبدهی در آبخوان­ها، چاه­ها و چشمه­ها قبل، حین و بعد از وقوع یک رویداد لرزه‌ای شود. تغییرات تراز آب می­تواند در ایجاد دگرشکلی در پوسته، تأثیر بر منابع آبی و تولیدات نفتی، شروع روانگرایی، کنترل توزیع پس‌لرزه­ها، چکانش زمین‌لرزه­های جدید و فوران گل‌فشان­ها مؤثر باشد؛ از‌این‌رو، این تغییرات نسبت به دیگر اثرهای هیدرولوژیکی زمین­لرزه از اهمیت بیشتری برخوردار است. در این مطالعه، اثر زمین­لرزه کاکی (3/6Mw ) واقع در استان بوشهر (20 فروردین­ماه 1392) بر تراز و آبدهی چاه­های مناطق مجاور کانون زمین­لرزه در محدوده‌ای با شعاع 50 کیلومتر از رومرکز بررسی شده است. به این منظور، سطح تراز آب چاه­های پیرامون رومرکز در ماه­های متوالی در سال­های قبل، حین و بعد از وقوع رویداد با هم مقایسه شدند. با توجه به سازوکار کانونی زمین­لرزه، با برآورد مناطق کشش و فشارش در منطقه مطالعاتی، به بررسی همخوانی اثر رویداد در این مناطق با تغییرات سطح تراز آب و آبدهی چاه­ها و چشمه­ها پرداخته شد. ارزیابی­ها بیانگر بالا آمدن سطح آب چاه­ها و افزایش آبدهی چاه­ها و چشمه­هایی است که در محدوده تشعشع امواج فشاری واقع شده‌اند. به عبارت دیگر، بیشتر چاه­هایی که در راستای تابش امواج تراکمی هستند، در یک بازه زمانی چند­ماهه (حداکثر چهار ماه) افزایش سطح تراز را نشان می­دهند.درمقابل، چاه­هایی که در راستای تنش برشی قرار دارند، یا با افت سطح تراز آب مواجه شده‌اند یا تغییر محسوسی نداشته‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of earthquake effects on groundwater level and discharge of water wells following the 2013 Mw 6.3 Kaki earthquake occurred in Bushehr province (Iran)

نویسندگان [English]

  • sara goudarzi 1
  • saeed zarei 2
  • Seyyed Reza mansouri 2
1 MSc.Studen, faculty of science, department of geophysics, Persian Gulf University, Bousheur. Iran
2 Assistant Professor, faculty of science, department of geophysics, Persian Gulf University, Bousheur.
چکیده [English]

When an earthquake occurs, a part of the released energy is propagated in the form of elastic waves at a speed that depends on the nature of the propagation environment. The radiated energy from earthquake focus in all directions is called radiation pattern and depends on the fault mechanism. The environment response to longitudinal waves appears as compression and expansion of the environment. This can affect on water levels in aquifers, wells and springs before, during and after the event. The changes of the groundwater levels caused by an earthquake are important with respect to other induced parameters; they may generate crustal deformations, affect on water supplies and production of oil wells, initiate liquefaction, control the distribution of aftershocks, trigger earthquakes and mud volcano eruptions. In this study, the effect of April 2013 Kaki earthquake (Mw6.3) on water levels in wells located in a range of 50 km radius around the earthquake epicenter was compared in successive months in the preceding years, during and after the event. Regarding the earthquake focal mechanism and using the estimated tensile and compressive zones in the study area, the correlation of these areas with changes in water levels and discharge of wells and springs was examined. The results of evaluations indicate that the water levels in wells rose and the discharge of the wells and springs located within the radiation range of the pressure waves increased after the earthquake. The wells located in the direction of compressive radiation showed a level of elevation. In contrast, wells located along the shear strain either experienced a drop in water level or had no significant changes. The results show that there is compatibility between the pattern of seismic waves and the changes in the water levels in wells and springs. Because of the difference in characteristics of geological formations, the response of the wells located in the same seismic pattern may not be the same. On the other hand, since the earthquake occurred in the low rainfall time, changes in water levels cannot be caused by rainfall. Field data shows other recorded effects such as the recovery of the springs of Kale and Seyyed Ali which indicates the increase in discharge of water in the region. The liquefaction created in the area is a reason for the passage of a compressive wave that has led to increase of water levels in the wells. The amount of decrease or increase in water level depends on the magnitude and distance to hypocenter of the earthquake and geological characteristics of the well. The water level in the well located in Shonbe village (28.34°N, 51.76°E) increased 1.6 m after the earthquake.
 

کلیدواژه‌ها [English]

  • Longitudinal waves
  • stress
  • strain
  • focal mechanism
  • water level changes
  • well discharge
Beck, R. W., et al., 2003, High-and low-risk profiles for the development of multiple sclerosis within 10 years after optic neuritis: experience of the optic neuritis treatment trial: Archives of ophthalmology (Chicago, Ill: 1960), 121(7), 944-949.
Blanchard, F. B., and Byerly, P., 1935, A study of a well gauge as a seismograph: Bulletin of the SeismologicalSociety of America, 25(4), 313-321.
Bosl, W. J., and Nur, A., 2002, Aftershocks and pore fluid diffusion following the 1992 Landers earthquake: Journal of Geophysical Research: Solid Earth, 107(B12), ESE-17.
Bower, D. R., and Heaton, K. C., 1978, Response of an aquifer near Ottawa to tidal forcing and the Alaskan earthquake of 1964:Canadian Journal of Earth Sciences, 15(3), 331-340.
Brodsky, E. E., Roeloffs, E., Woodcock, D., Gall, I., and Manga, M, 2003, A mechanism for sustained groundwater pressure changes induced by distant earthquakes:Journal of Geophysical Research: Solid Earth, 108(B8).
Chen, J. S., and Wang, C. Y., 2009, Rising springs along the Silk Road: Geology, 37, 243-246.
Chia, Y., Chiu, J. J., Chiang, Y. H., and Lee, T. P., 2008, Spatial and temporal changes of groundwater level induced by thrust faulting: Pure and Applied Geophysics, 165(1), 5-16.
Crews, J. B., and Cooper, C. A., 2014, Experimental evidence for seismically initiated gas bubble nucleation and growth in groundwater as a mechanism for coseismic borehole water level rise and remotely triggered seismicity: Journal of Geophysical Research: Solid Earth, 119(9), 7079-7091.
Elliott, J. R., Bergman, E. A., Copley, A. C., Ghods, A. R., Nissen, E. K., Oveisi, B., Tatar, M., Walters, R. J., and Yamini‐Fard, F., 2015, The 2013 Mw 6.2 Khaki‐Shonbe (Iran) Earthquake: Insights into seismic and aseismic shortening of the Zagros sedimentary cover: Earth and Space Science, 2(11), 435-471.
Ferenci, Peter, et al., 2014, ABT-450/r–ombitasvir and dasabuvir with or without ribavirin for HCV: New England Journal of Medicine, 370(21), 1983-1992.
Harris, R., 1998, Introduction to special section,
 
stress triggers, stress shadow, and implications for seismic hazard: Journal of Geophysical Research, 103, 24347–24358.
Holmqvist, K., et al., 2004, The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration: Journal of Biological Chemistry, 279(21), 22267-22275.
Holzer, T. L., Padovani, A. C., Bennett, M. J., Noce, T. E., and Tinsley, J. C., 2005, Mapping NEHRP VS30 site classes: Earthquake Spectra, 21(2), 353-370.
Kang, Y. T., Kunugi, Y., and Kashiwagi, T., 2000, Review of advanced absorption cycles: performance improvement and temperature lift enhancement: International Journal of Refrigeration, 23(5), 388-401.
King, A. R., and Begelman, M. C., 1999, Radiatively driven outflows and avoidance of common-envelope evolution in close binaries: The Astrophysical Journal Letters, 519(2), L169.
King, G. C. P., Stein, R. S., and Lin, J., 1994, Static stress changes and the triggering of earthquakes: Bulletin of the Seismological Society of America, 84(3), 935-953.
Ma, K. F., Chan, C. H., Stein, R. S, 2005, Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw =7.6 Chi–Chi, Tiwan, earthquake: Journal of Geophysical Research, 110, B05S19, doi: 10.1029/2004JB003389.
Marcaccio, M., and Martinelli, G., 2012, Effects on the groundwater levels of the May-June 2012 Emilia seismic sequence:Annals of Geophysics, 55(4).
Montgomery, D. R., and Manga, M., 2003, Streamflow and water well responses to earthquakes: Science, 300(5628), 2047-2049.
Muir‐Wood, R., and King, G. C., 1993, Hydrological signatures of earthquake strain:Journal of Geophysical Research: Solid Earth, 98(B12), 22035-22068.
Nespoli, M., Todesco, M., Serpelloni, E., Belardinelli, M. E., Bonafede, M., Marcaccio, M., Rinaldi, A. P., Anderlini, L., and Gualandi, A., 2016, Modeling earthquake effects on groundwater levels: evidences from the 2012 Emilia earthquake (Italy):Geofluids, 16(3), 452-463.
Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E. C., Biryukov, S., Abbafati, C., Abera, S. F., and Abraham, J. P., 2014, Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013:The Lancet,384(9945), 766-781.
Nur, A., and Booker, J. R., 1972, Aftershocks caused by pore fluid flow: Science, 175(4024), 885-887.
Okada, Y., 1985, Surface deformation due to shear and tensile faults in a half-space:Bulletin of the Seismological Society of America, 75(4), 1135-1154.
Okada, Y., 1992, Internal deformation due to shear and tensile faults in a half-space: Bulletin of the Seismological Society of America, 82(2), 1018-1040.
Otto, H., et al., 1989, Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin: Proceedings of the National Academy of Sciences, 86(23), 9228-9232.
Quilty, E. G., and Roeloffs, E. A., 1997, Water-level changes in response to the 20 December 1994 earthquake near Parkfield, California:Bulletin of the Seismological Society of America, 87(2), 310-317.
Rexin, E. E., Oliver, J., and Prentiss, D., 1962, Seismically-induced fluctuations of the water level in the Nunn-Bush well in Milwaukee: Bulletin of the Seismological Society of America, 52(1), 17-25.
Roberts, H. H., Coleman, J. M., Bentley, S. J., and Walker, N., 2003, An embryonic major delta lobe: A new generation of delta studies in the Atchafalaya-Wax Lake Delta system: Gulf Coast Association of Geological Societies, 53, 690-703.
Roeloffs, E. A., 1998, Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes: Journal of Geophysical Research: Solid Earth, 103(B1), 869-889.
Rojstaczer, S., Wolf, S., and Michel, R., 1995, Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes: Nature, 373(6511), 237.
Rosé, C., Wang, Y. C., Cui, Y., Arguello, J., Stegmann, K., Weinberger, A., and Fischer, F., 2008, Analyzing collaborative learning processes automatically: Exploiting the advances of computational linguistics in computer-supported collaborative learning:International journal of computer-supported collaborative learning, 3(3), 237-271.
Rudnicki, J. W., Yin, J., and Roeloffs, E. A., 1993, Analysis of water level changes induced by fault creep at Parkfield, California: Journal of Geophysical Research: Solid Earth, 98(B5), 8143-8152.
Shalev, E., Kurzon, I., Doan, M. L., and Lyakhovsky, V., 2016, Sustained water‐level changes caused by damage and compaction induced by teleseismic earthquakes: Journal of Geophysical Research Solid Earth, 121(7), 4943-4954.
Shi, Z., et al., 2015, Mechanism of co-seismic water level change following four great earthquakes–insights from co-seismic responses throughout the Chinese mainland: Earth and Planetary Science Letters, 430, 66-74.
Singh, V., 2008, Impact of the Earthquake and Tsunami of December 26, 2004, on the groundwater regime at Neill Island (south Andaman): Journal of Enviromental Management, 89(1), 58-62.
 
Sorey, M. L., Vicki, S., McConnell, and Roeloffs, E., 2003, Summary of recent research in Long Valley caldera, California: Journal of volcanology and geothermal research, 127(3-4), 165-173. ‎Stein, R., 1999, The role of stress transfer in earthquake occurrence: Nature, 402, 605-609.
Van Der Wel, A., et al., 2014, 3D-HST+ CANDELS: the evolution of the galaxy size-mass distribution since z= 3: The Astrophysical Journal, 788(1), 28.
Wakita, H., 1975, Water wells as possible indicators of tectonic strain: Science, 189(4202), 553-555.
Wang, J., Agrawala, M., and Cohen, M. F., 2007, Soft scissors: an interactive tool for realtime high quality matting: in ACM Transactions on Graphics(TOG), 26(3), 9.
Wang, C. Y. and Chia, Y., 2008, Mechanism of water level changes during earthquakes: Near field versus intermediate field:Geophysical Research Letters, 35(12).
Wang, L., Feng, Z., Wang, X., and Zhang, X., 2009, DEGseq: an R package for identifying differentially expressed genes from RNA-seq data: Bioinformatics, 26(1), 136-138.
Wang, C. Y., and Manga, M., 2010, Hydrologic responses to earthquakes and a general metric:Geofluids, 10(1‐2), 206-216.
Xiaolong, S., Yaowei, L., and Hongwei, R., 2011, Influence of the 2011 Mw9.0 Japan earthquake on groundwater levels in Chinese mainland: Geodesy and Geodynamics, 2(4), 33-39.
Zhang, Y., Fu, L. Y., Huang, F., and Chen, X., 2015, Coseismic water-level changes in a well induced by teleseismic waves from three large earthquakes: Tectonophysics, 651, 232-241.