ارائه یک مدل جدید تبدیل سطوح مبنای مسطحاتی بر مبنای تقریب بیضوی و برآورد ضرایب سطح تبدیل مؤلفه ارتفاعی با به‌کارگیری مدل ریاضی تعمیم‌یافته

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشیار دانشکده مهندسی نقشه برداری و اطلاعات مکانی، دانشگاه تهران، تهران، ایران

2 دانشجوی کارشناسی ارشد ژئودزی، دانشکده مهندسی نقشه برداری و اطلاعات مکانی، دانشگاه تهران، تهران، ایران

10.30499/ijg.2020.107362

چکیده

مسئله تبدیل مختصات ژئودتیک از یک سطح مبنای مسطحاتی به سطح مبنای مسطحاتی دیگر از مسائل مهم و کاربردی در ژئودزی هندسی است که با توجه به فراگیر شدن استفاده از سامانه­های اطلاعات مکانی در یکپارچه­سازی و تحلیل و تفسیر اطلاعات مکانی، لزوم یکسان­سازی سطح مبنای مختصات لایه­های مختلف اطلاعاتی به­مراتب بیش از گذشته است. انتقال مختصات منحنی‌الخط از یک سطح مبنا به سطح مبنای دیگر که اصطلاحاً مسئله تبدیل سطوح مبنا یا دیتوم نامیده می­شود، بر پایه وجود مختصات ژئودتیک سه­بعدی تعدادی نقاط مشترک در هر دو سطح مبنا استوار است و پارامترهای تبدیل دو سطح بر مبنای مختصات معلوم این نقاط برآورد می­شود. مختصات علائم مرزی در مرزهای بین‌المللی و نقشه­های پوششی کوچک­مقیاس کشوری بر مبنای سطوح مبنای مسطحاتی محلی قدیمی تعیین شده است. در تعیین پارامترهای تبدیل این سطوح به سطوح مبنای جدید جهانی- که در تعیین موقعیت و مکان‌یابی با سامانه­های تعیین موقعیت جهانی به‌کار­می‌روند - یک مشکل اساسی در به‌کارگیری روابط ریاضی تبدیل وجود دارد که امکان استفاده مستقیم از روش­های کلاسیک ارائه­شده برای حل این مسئله را غیرممکن می­سازد. موقعیت ژئودتیک سه­بعدی نقاط با استفاده از سامانه­های تعیین موقعیت جهانی به­صورت همگن و در سه بعد تعیین می­شود؛ این در حالی است که تعیین موقعیت نقاط کلاسیک مختصات ژئودتیک نقاط در دو بعد مسطحاتی صورت می­گیرد و ارتفاع نقاط هم در بهترین حالت، به­صورت ارتفاع ارتومتریک (بر مبنای ارتفاع محلی) معلوم است. به­منظور به‌کارگیری روابط کلاسیک تبدیل سطوح مبنا در این حالت خاص، لازم است تبدیل ارتفاع ارتومتریک به ژئودتیک در سطح مبنای مربوطه انجام شود. هدف این مقاله بررسی نتیجه به‌کارگیری دو روش برای تعیین ارتفاع ژئوئید در نقاط مورد استفاده در تعیین پارامترهای تبدیل است. روش اول استفاده از مدل­های جهانی جاذبه و محاسبه ارتفاع ژئوئید و روش دوم گسترش مدل ریاضی روابط تبدیل، جهت برآورد هم‌زمان پارامترهای تبدیل سطوح ارتفاعی و سطح تبدیل ارتفاعی است. نتایج عددی نشان­دهنده دستیابی به دقت بهتر تبدیل در هنگام استفاده از روش دوم در تعیین پارامترهای تبدیل سطوح مبناست.
    بهبود تقریب روابط تبدیل از حالت کروی هشت پارامتری و بیضوی پنج پارامتری به روابطی با تقریب بیضوی با هشت پارامتر، دیگر دستاورد مورد بحث در این مقاله است. استفاده هم‌زمان این تقریب و مدل ریاضی گسترش­یافته، حتی در صورت نبود ارتفاع ژئودتیک در هر دو دستگاه در نقاط مشترک مورد استفاده، به دقت بهینه در برآورد پارامترهای تبدیل منجر می­شود. روش­های پیشنهادی، در داده­های موجود از کشور نیجریه پیاده­سازی و نتایج ارزیابی شده است. نتایج عددی داده­های مذکور، نشان­دهنده دستیابی به دقت دهم ثانیه در مؤلفه­های منحنی‌الخط مختصات و دقت دسی­متری در مؤلفه ارتفاعی است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A New Approach for Datum Transformation Based on Ellipsoidal Approximation and Simultaneous Estimation of the Height Correcting Surface Parameters

نویسندگان [English]

  • Mohammad Ali Sharifi 1
  • Mohammad Mahdi Kariminejad 2
1 Associate Professor, School of Surveying and Geospatial Engineering, college of Engineering, University of Tehran, Iran
2 MSc student of Geodesy, School of Surveying and Geospatial Engineering, college of Engineering, University of Tehran,Iran
چکیده [English]

The problem of datum transformation; determination of parameters for transferring curvilinear coordinate from one ellipsoid to another, is one of the main problems in geometrical geodesy. The problem draws the attentions of many researchers due to its role in the integration of all types of data in the geospatial database framework. Although the problem is one of the oldest geometrical problems by its nature, it is still challenging because of the newly introduced Earth gravitational models and precise global coordinate measurements using the global positioning systems. Different methods have been introduced by many famous geodesists like Molodensky (1962), Vanicek (1986) and others.
    In this paper, we developed a full mathematical model for determination of datum transformation parameters based on ellipsoidal approximation. It is theoretically and numerically compared with the previously developed model with spherical approximation. For small area, both models lead to the same accuracy while we expect to achieve higher with the ellipsoidal approximation in wider area.
    Moreover, lack of ellipsoidal height in the old data sets is one of the main obstacles for the implementation of the classical transformation schemes. Herein, we introduced two methods for solving this problem. The Earth Gravitational Models (EGMs) which were wieldy available in the new century, thanks to the Earth gravity field’s dedicated missions, were employed to get an estimate of the geoidal heights of the data point with enough accuracy. Alternatively, the idea of the widely used polynomial approximating correcting surface was considered to model the geoid height at the area of computation. The numerical results showed that the second alternative was most helpful. Higher accuracy and better fitness in terms of statistical goodness of fit criteria were the outcomes of the implementation of the polynomial approximating correcting surface.
    In order to show the performance of the ellipsoidal approximation as well as the idea of polynomial correcting surface, 150 points were selected in the Nigeria. The curvilinear coordinates of the data points were given both in the CLARCK-1880 (local old coordinates) and the World Geodetic System 1984 (WGS84) as the global new coordinates. The old coordinates of the data points were geodetic latitudes, geodetic longitudes and orthometric heights where the new coordinate set is fully geodetic components. A quadratic polynomial mathematical model was employed to approximate the geoid surface in the country. The achieved results showed its reasonable accuracy.

کلیدواژه‌ها [English]

  • Curvilinear coordinates transformation
  • differential technique
  • Molodensky method
  • ellipsoidal approximation
  • height component
  • Orthometric height
Badekas, J., 1969, Investigations related to the establishment of a world geodetic system: Ohio State University, 8, 181 pp.

Bursa, M, 1962, The theory for the determination of the non-parallelism of the minor axis of the reference ellipsoid and the inertial polar axis of the Earth, and the planes of the initial astronomic and geodetic meridians from the observation of artificial Earth satellites: Studia Geophysica et Geodaetica, 6, 209-214.

Deakin, R. E., 2004, The standard and abridged Molodensky coordinate transformation formulae: Department of Mathematical and Geospatial Sciences, RMIT University, 1-21.

Molodensky M., Eremeev V. and Yurkina M., 1962, Methods for study of the external gravitational field and figure of the earth, Technical notes, Moscow.

Orupabo, S., Opuaji, T. A., and Adekunle, I. A., 2014, 50-Points data for deriving transformation parameters of geodetic data in Nigeria: Indian Journal of Scientific Research and Technology, 2, 97-101.

Vanicek, P., and Krakiwsky, E. J., 1986, Geodesy: The Concepts: Elsevier.

Wolf, H., 1963, Geometric connection and re-orientation of three-dimensional triangulation nets: Bulletin Géodésique, 68, 165-169.

Závoti, J., and Kalmár, J., 2016, A comparison of different solutions of the Bursa–Wolf model and of the 3D, 7-parameter datum transformation: Acta Geodaetica et Geophysica, 51, 245-256.