مقایسه شکست امواج راسبی روی اروپا و غرب آسیا از دیدگاه فعالیت موج

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشجوی دکتری، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

2 دانشیار پژوهشگاه هواشناسی و علوم جو، تهران، ایران

3 استادیار پژوهشگاه هواشناسی و علوم جو، تهران، ایران

چکیده

در این مطالعه کمیت­های فعالیت موج و شار فعالیت موج در شکست واچرخندی و چرخندی امواج روی اروپا برای زمستان (15 نوامبر تا 15 آوریل) سال­های 1979 تا 2018 با استفاده از میانگین روزانه داده­های بازتحلیل ERA-INTERIM  برای کمیت‌های ارتفاع ژئوپتانسیلی، سرعت باد افقی و تاوایی پتانسیلی در ترازهای 300، 200، 150، 100 و50 هکتوپاسکال محاسبه و تحلیل شده‌اند. نتایج نشان داد که در شکست­های واچرخندی (چرخندی)، یک ناوه باریک (پهن) با محور شمال شرقی- جنوب غربی (شمال غربی- جنوب شرقی) به همراه تاوایی پتانسیلی در حدود PVU 8 - 5 (6 - 4) از روی اروپا تا غرب (شرق) دریای مدیترانه کشیده می­شود. در شکست واچرخندی (چرخندی) امواج، روی غرب اروپا (دریای مدیترانه) افزایش ارتفاع و روی دریای مدیترانه (شرق اروپا)، کاهش ارتفاع مشاهده می­شود و مسیر انتشار امواج و فرارفت تاوایی آنها استواسو (قطب­سو) است؛ درنتیجه، همراه با شکست واچرخندی (چرخندی) امواج، شار استواسوی (قطب­سوی) فعالیت موج به پایین­دست ناوه در عرض­های پایین­تر (بالاتر) از N40، باعث تقویت (تضعیف) امواج روی دریای مدیترانه و غرب آسیا (N40-20) می­شود.
در مقایسه با شکست­های چرخندی، دامنه و مقدار تاوایی امواج در شکست­های واچرخندی بزرگ­تر است؛ جت­ها در عرض بالاتری روی اروپا و دریای مدیترانه شکل می­گیرند و مؤلفه­های نصف­النهاری و قائم فعالیت موج در شکست واچرخندی حدود 5/1 برابر مقدار آن در شکست چرخندی است. همچنین به نظر می­رسد که علاوه­بر کمتر بودن تعداد شکست­های چرخندی، این شکست­ها خیلی ضعیف­تر از شکست­های واچرخندی امواج روی اروپا هستند.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of wave breaking over Europe and Mediterranean region: wave activity aspects

نویسندگان [English]

  • mohammad mehdi khodadi 1
  • majid azadi 2
  • Mohamad Moradi 3
  • Abbas Ranjbar SaadatAbadi 2
1 دانشجوی دکتری، پژوهشگاه هواشناسی و علوم جو، تهران، ایران
2 Associate Professor, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran
3 Assistant Professor, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran
چکیده [English]

In the present study, using the ERA-INTERIM reanalysis data for geopotential height, horizontal wind speed and relative vorticity at 300, 200, 150, 100 and 50 hPa levels, the wave activity and wave activity flux for cyclonic and anticyclonic Rossby wave breaking events that occurred over Europe during the winter time 1979-2018, were calculated and analyzed. Results showed that in anticyclonic (cyclonic) wave breaking events, a narrow (wide) trough with north-east/south-west (north-west/south-east) axis and associated potential vorticity with values around 5-8 (4-6) 1e6 PVU are extended from Europe to the west (east) of Mediterranean.
    In the anticyclonic wave breaking events, the wave amplitude and their associated potential voriticity are higher compared to cyclonic events and also the associated jet streams form in higher latitudes over Europe and the Mediterranean. It appears that intensification of the trough and its extention to lower latitudes over the Mediterranean is associated with intensification of the ridge over northwest of Europe, while in cyclonic wave breaking events the insification of the trough over the east of Europe is associated with intensification of the ridge in lower latitudes over the west of the Mediterranean. The waves in anticyclonic wave breaking events move to lower latitudes over the Mediterranean, while in cyclonic wave beakings, the waves move to north of Europe. Therefore, the anticyclonic (cyclonic) wave breaking events are generally associated with equatorward (poleward) flux of wave activity, downstream of the trough in latitudes lower (higher) than 40N, which causes the intensification (weakening) of synoptic waves over the Mediterranean and west of Asia. Also, the value of equatorward wave activity is 1.5 times more than those of poleward fluxes. It was found that in anticyclonic wave breakings, the downward wave activity flux is around twice, when compared to cyclonic wave breaking events.
    Our results showed that during anticyclonic wave breaking, the equatorward of wave activity flux at 40N over west of Europe is larger than its value over the East Mediterranean and west of Asia, while during cyclonic wave breaking events the poleward flux of wave activity over west of Europe is negligible and it becomes equatorward over east of Europe and west of Asia. It seems that the reason is the existence of a ridge over Euroasia which results in the formation of a blocking over east of Europe and consequently causes the intensification of troughs in lower latitudes. As such, in addition to the lesser number of cyclonic wave breakings compared to those of anticyclonics, the cyclonic wave breaking events are relatively weaker than anticyclonic breakings over Europe. 

کلیدواژه‌ها [English]

  • anticyclonic wave breaking
  • cyclonic wave breaking
  • wave activity flux
  • quasi-biennial oscillation
اسبقی، ق.، جغتایی، م.، محب‌الحجه، ع.، 1394، بررسی اثر نوسان شبه­دوسالانهQBO  بر ساختار تاوه قطبی در ابتدای زمستان: کنفرانس ژئوفیزیک ایران، 362-366.
اسعدی، ع.، احمدی گیوی، ف، قادر، س.، محب‌الحجه، ع.، 1390، بررسی دینامیک مسیر توفان اطلس از دیدگاه شار فعالیت موج راسبی: مجله ژئوفیزیک ایران، 5(4)، 31-45.
رضائیان، م.، محب‌الحجه، ع.، احمدی گیوی، ف.، نصر اصفهانی، م.، 1393، تحلیل آماری- دینامیکی رابطه بین مسیر توفان مدیترانه و نوسان اطلس شمالی بر مبنای فرایافت فعالیت موج: مجله فیزیک زمین و فضا، 40(2)، 139-152.
عباس‌زاده اقدم، ک.، محب‌الحجه، ع.، احمدی گیوی، ف.، 1393، بررسی اثرهای اقلیم شناختی تاوه قطبی پوشن­سپهر در منطقه جنوب غرب آسیا: مجله فیزیک زمین و فضا، 40(4)، 127-138.
فهیمی، س.، احمدی گیوی، ف.، مزرعه فراهانی، م.، 1392، بررسی اقلیم­شناسی بندال­های آسیا و اروپا با دو شاخص در دوره 2010-1950: مجله ژئوفیزیک ایران، 7(4)، 31-51.
مرتضی­پور،س.، احمدی گیوی، ف.، محب‌الحجه، ع.، نصر اصفهانی، م.، 1395، ارزیابی اثر بسته‌موج­های کژفشاری اقیانوس اطلس شمالی بر مسیر توفان دریای مدیترانه در زمستان 2012-2011: مجله ژئوفیزیک ایران، 10(2)، 1-14.
Andrews, D. G., Holton, J. R., and Leovoy, C. B., 1987, Middle Atmosphere Dynamics: International Geophysics Series (Vol. 40,pp. 311-333). Academic Press.
Baldwin, M.P and   L. J. Gray  T. J. Dunkerton  K. Hamilton  P. H. Haynes  W. J. Randel. 2001, Holton M. J. Alexander ,  I. Hirota  T. Horinouchi  D. B. A. Jones  J. S. Kinnersley  C. Marquardt  K. Sato., The    quasi‐biennial oscillation.,2001, J.Geophys.Res., 39,2 , 179-229.
Dunn‐Sigouin, E., and Shaw, T. A., 2015, Comparing and contrasting extreme stratospheric events, including their coupling to the tropospheric circulation: Journal of Geophysical Research: Atmosphere, 120(4), 1374-1390.
Edmon, H. J., Hoskins, B. J., and McIntyre, M. E., 1980, Eliassen-Palm cross-sections for the troposphere: Journal of Atmospheric Sciences, 37, 2600-2616.
Esler, J. G., and Haynes, P. H., 1999, Mechanisms for wave packet formation and maintenance in asigeostrophic two-layer model: Journal of Atmospheric Sciences, 56(15), 2457-2490.
Franzki, C., Lee, S., Feldestein, S. B., 2004, Is the North Atlantic oscillation a breaking wave? American Meteorological Society, 61, 145-160.
Harnik, N., Perlwitz, J., and Shaw, T. A., 2011, Observed decadal changes in downward wave coupling between the stratosphere and troposphere in the Southern Hemisphere: Journal of Climate, 24(17), 4558-4569.
Haynes, P. H., and McIntyre, M. E., 1987, On the representation of Rossby wave critical layers and wave breaking in zonally truncated models: Journal of Atmospheric Sciences, 44(17), 2359-2382.
Kalnay, E. and Coauthors, 1996, The NCEP/NCAR 40-year reanalysis project: Bulletin of the American Meteorological Society, 77(3), 437-472.
 Magnusdottir, G., and Haynes, P. H., 1998, Reflection of planetary waves in three-dimensional tropospheric flows: Journal of Atmospheric Sciences, 56(4), 652-669.
Martius, O., Schwarz, C., and Davies, H. C., 2007, Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification: Journal of Atmospheric Sciences, 64(7), 2576–2592.
Masato, G., Hoskins, B. J., and Woollings, T. J., 2011, Wave‐breaking characteristics of midlatitude blocking: Quarterly Journal of the Royal Meteorological Society, 138, 1285-1296.
Masato, G., Hoskins, B. J., and Woollings, T., 2013, Wave-breaking characteristics of Northern Hemisphere winter blocking: A two-dimensional approach: Journal of Climate, 26(13), 4535-4549.
Matsuno, T., 1970, Vertical propagation of stationary planetary waves in the winter Northern Hemisphere: Journal of Atmospheric Sciences, 27(6), 871–883.
Postel, G. A., and Hitchman, M. H., 1999, A Climatology of Rossby wave breaking along the subtropical Tropopause: Journal of Atmospheric Sciences, 56(3), 359-373.
Scott, R. K., and Cammas, J. P., 2002, Wave breaking and mixing at the subtropical tropopause: Journal of Atmospheric Sciences, 59(15), 2347-2361.
Scott, R. K., and Dritschel, D. G., 2005, Downward wave propagation on the polar vortex: Journal of Atmospheric Sciences, 62(9), 3382-3395.
Shaw, T. A., and Perlwitz, J., 2013, The life cycle of Northern Hemisphere downward wave coupling between the stratosphere and troposphere: Journal of Climate, 26(5), 1745–1763.
Strong, C., and Magnusdottir, G., 2008, Tropospheric Rossby wave breaking and NAO/NAM: Journal of Atmospheric Sciences, 65(9), 2861-2875.
Strong, C., and Magnusdottir, G., 2010, The role of Rossby wave breaking in shaping the equilibrium atmospheric circulation response to North Atlantic boundary forcing: Journal of Climate, 23(6), 1269-1276.
Troncroft, C. D., Hoskins, B. J., and McIntyre, M. E., 1993, Two paradiags of baroclinic wave life-cycle beahaviour: Quarterly Journal of the Royal Meteorological Society, 119, 17-55.