شبیه سازی ایجاد امواج باد تحت تاثیر استهلاک ناشی از بسترریزدانه در خلیج دیلم

نوع مقاله : مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، ایران

2 استادیار، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، ایران

3 دانشیار، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، ایران

چکیده

تأثیر لایه گلی نرم بر روند تشکیل امواج ناشی از باد در آب­هایی که عمق کم و میانی دارند، در خلیج دیلم به کمک مدل عددی-طیفی SWAN بررسی شده است. بندر دیلم در شمال غربی خلیج فارس واقع شده است و به‌شدت تحت تأثیر انباشته‌های ریزدانه و گل سیالی است که بیشتر برخاسته از اروندرود است. نتیجه عبور امواج سطحی از روی بستر تشکیل یافته از ریزدانه­های چسبنده، کاهش ارتفاع موج در امتداد خط انتشار موج است. صحت­سنجی با کمک داده­های اندازه‌گیری میدانی موجود در خلیج دیلم برای فوریه و مارس سال 2007 انجام گرفته است. شبیه­سازی اولیه با مدل SWAN بدون اعمال اثر لایه گل سیال، تمایل فراتخمین برای ارتفاع موج مشخصه را نشان می­دهد. افزایش زبری بستر برای بهبود نتایج شبیه­سازی موج، استهلاک بیشتر برای ارتفاع موج مشخصه با فرکانس­های پایین‌تر از 25/0 را نشان می­دهد و روی امواج با فرکانس بالاتر تأثیر زیادی دیده نمی­شود. در مطالعات میدانی، استهلاک امواج برای امواج با فرکانس­های بالاتر مشاهده شده است. در شبیه‌سازی‌های انجام‌شده، دقت مناسب شبیه­سازی با استفاده از پارامترهای مختلف مدل و استفاده از فرایند کالیبراسیون محقق نشد؛ لذا پس از اعمال اثر لایه گل سیال در مدل نسل سوم ایجاد و انتشار امواج SWAN، نتایج شبیه‌سازی­های نهایی با اعمال اثر اندرکنش امواج با لایه گل سیال، بهبود درخور ‌توجهی را نشان می­دهد. مقایسه نتایج شبیه­سازی بر کارآمد بودن این روش در شبیه­سازی ایجاد و انتشار امواج روی سواحل ریزدانه گلی دلالت دارد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Wind-wave generation, affected by mud-induced wave dissipation in Deylam Bay

نویسندگان [English]

  • Fatemeh Ameri 1
  • S. Abbas Haghshenas 2
  • Sarmad Ghader 3
1 M.Sc. Student, Department of Space Physics, Institute of Geophysics, University of Tehran, Iran
2 Assistant Professor, Department of Space Physics, Institute of Geophysics, University of Tehran, Iran
3 Associate Professor, Department of Space Physics, Institute of Geophysics, University of Tehran, Iran
چکیده [English]

Considerable decay of wave energy along the wave trajectory over muddy beds makes a different wave generation/transformation in comparison with sandy/rocky environments. The role of soft mud to dissipate waves has been recently implemented to SWAN wave model. A new dispersion relation obtained from a two-layer viscous model is implemented in the wave-simulation model, SWAN-mud, to consider wave decay in coastal areas due to the presence of fluid mud deposits. Significant wave heights over gentle muddy slopes are usually overestimated using default SWAN model setup, while it is expected that using SWAN-mud setup, improves the correlation between model simulations and real field measurements. However, considering the viscous assumption of mud behavior in developing new dispersion relation, the model results are highly dependent on the assumed mud rheology and mud behavior in reality.
    The north-western part of the Persian Gulf is covered by mud deposits originated mainly from the Arvand River catchment area. Mud deposits up to 20 meters thickness are observed at the very shallow coast of Deylam Bay, which implies high rates of wave dissipation in the area; something which should be taken in to consideration for wave climate estimations. A set of 37-days field measurements in 2007 is available for model performance validation. This research aims to adopt various facilities implemented in SWAN wave model to regenerate the wave measurements at a mid-depth station in Deylam Bay, over the muddy bed of Northern Persian Gulf with acceptable accuracy. A number of about 30 model configurations are considered for wave generation over the mud coast of Deylam Bay. Input wind data are adopted from ERA5 product of ECMWF global model. WRF model is adopted to improve input wind data accuracy as well.
     The focus of this study is to develop a proper hindcast and forecast system for predicting wave characteristics in the north-western of Persian Gulf, including the mud induced wave dissipation in the areas covered with soft muddy deposits. The developed model considering mud-induced wave dissipation is validated against available field data. Based on the achieved results, the ordinary SWAN model setup is not capable to well estimate all the storm events in the period of measurements. However, considering the mud-induced dissipation, implemented in SWAN-mud model, the developed model is capable to capture all the events with different combinations of wave properties in the study area. The final model predictions favorably agree with the field survey data in the study area.
 

کلیدواژه‌ها [English]

  • wind wave generation
  • wave-mud interaction
  • SWAN wave model
  • muddy bed
  • wave damping
قادر، س.، یازجی، د.، سلطان‌پور، م.، نعمتی، م. ح.، 1395، به‌کارگیری یک سامانه همادی توسعه داده شده برای مدل WRF جهت پیش­بینی میدان باد سطحی در محدوده خلیج فارس: مجله هیدروفیزیک، 1، 41-54.
Beyramzade, M., and Siadatmousavi, S. M., 2018, Implementation of viscoelastic mud-induced energy attenuation in the third-generation wave model, SWAN: Ocean Dynamics, 68, 47–63, https://doi.org/10.1007/s10236-017-1118-4.
Booij, N., Ris, R. C., and Holthuijsen, L. H., 1999, A third generation wave model for coastal regions, part I, model description and validation: Journal of Geophysical Research, 104(C4), 7649–7666.
Bouws, E., and Komen, G. J., 1983, On the balance between growth and dissipation in an extreme, depth-limited wind-sea in the southern North Sea: Journal of Physical Oceanography, 13(9), 1653–1658.
Carniel, S., Benetazzo, A., Bonaldo, D., Falcieri, F. M., Miglietta, M. M., Ricchi, A., and Sclavo, M., 2016, Scratching beneath the surface while coupling atmosphere, ocean and waves: analysis of a dense water formation event: Ocean Modelling, 101, 101–112, http://dx.doi.org/10.1016/j.ocemod.2016.03.007.
Chou, H. T., 1989, Rheological response of cohesive sediments to water waves: Ph.D. thesis, University of California, Berkeley.
Copernicus Climate Change Service, CDS, C3S, 2017, ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate Copernicus Climate Change Service Climate Data Store (CDS), date of access. https://cds.climate.copernicus.eu/cdsapp#!/home.
Dalrymple, R. A., and Liu, P. L. -F., 1978, Waves over soft muds, a two-layer fluid model: Journal of Physical Oceanography, 8(6), 1121–1131.
De Wit, P. J., 1995, Liquefaction of cohesive sediment by waves: Ph.D. thesis, Delft University of Technology, The Netherlands.
Elgar, S., and Raubenheimer, B., 2008, Wave dissipation by muddy seafloors: Geophysical Research Letters, 35, L07611 https://doi.org/10.1029/2008GL033245.
Foda, A. M., Hunt, J. R., and Chou, H. T., 1993, A nonlinear model for the fluidization of marine mud by waves: Journal of Geophysical Research, 98, 7039–7047.
Gade, H. G., 1958, Effects of a non-rigid, impermeable bottom on plane surface waves in shallow water: Journal of Marine Research, 156(2), 61–82.
Ghader, S.‎, ‎Yazgi, D., Soltanpour, M., and Nemati,‎‎ M. H., 2016, On the use of an ensemble forecasting for prediction of surface wind over the Persian Gulf: ‎Proceedings ‎of ‎the ‎12th ‎International ‎Conference ‎on ‎Coasts, ‎Ports ‎and ‎Marine ‎Structures ‎(ICOPMAS 2016)‎.
Hagen, S. C., Zundel, A. K., and Kojima, S., 2006, Automatic, unstructured mesh generation for tidal calculations in a large domain: International Journal of Computational Fluid Dynamics, 20(8), 593-608.
Haghshenas, S. A., and Soltanpour, M., 2011, An analysis of wave dissipation at the Hendijan mud coast, the Persian Gulf: Ocean Dynamics, 61(2-3), 217-232.
Hsu, W. Y., Hwung, H. H., Hsu, T. J., Torres‐Freyermuth, A., and Yang, R. Y.,
 
2013, An experimental and numerical investigation on wave‐mud interactions: Journal of Geophysical Research: Oceans, 118(3), 1126-1141.
Kaihatu, J. M., Sheremet, A., Holland, K. T., 2007, A model for the propagation of nonlinear surface waves over viscous muds: Coastal Engineering, 54(10), 752–764.
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P.A.E.M., 1994, Dynamics and Modelling of Ocean Waves: Cambridge University Press, Cambridge.
Kranenburg, W., Winterwerp, J., de Boer, G., Cornelisse, J., and Zijlema, M., 2011, SWAN-mud: engineering model for mud-induced wave damping: Journal of Hydraulic Engineering, 137(9), 959–975.
MacPherson, H., 1980, The attenuation of water waves over a non-rigid bed: Journal of Fluid Mechanics, 97, 721–742.
Mehta, A. J., Williams, D. J. A., Williams, P. R., and Feng, J., 1995, Tracking dynamic changes in mud bed due to waves: Journal of Hydraulic Engineering, 121(6), 504–506.
Mei, C., and Liu, P., 1987, A Bingham-plastic model for a muddy seabed under long waves: Journal of Geophysical Research, 92, 14581–14594.
Ng, C. N., 2000, Water waves over a muddy bed: a two-layer Stokes' boundary layer model: Coastal Engineering, 40, 221–242.
Rogers, W. E., and Holland, K. T., 2009, A study of dissipation of wind-waves by mud at Cassino beach, brazil, prediction and inversion: Continental Shelf Research, 29(3), 676–690.
Safak, I., Sahin, C., Kaihatu, J. M., and Sheremet, A., 2013, Modeling wave-mud interaction on the central Chenier-plain coast, western Louisiana Shelf: USA. Ocean Modelling, 70, 75–84, https://doi.org/10.1016/j.ocemod.2012.11.006.
Safak, I., 2016, Variability of bed drag on cohesive beds under wave action: Water, 8(4), 131, https://doi.org/10.3390/w8040131.
Sahin, C., Safak, I., Hsu, T.-J., and Sheremet, A., 2013, Observations of suspended sediment stratification from acoustic backscatter in muddy environments: Marine Geology, 336, 24–32.
Samiksha, S. V., Vethamony, P., Rogers, W. E., Pednekar, P. S., and Babu, M. T., 2017, Wave energy dissipation due to mudbanks formed off southwest coast of India: Estuarine, Coastal and Shelf Science, 196, 387–398.
Shakeel, A., Kirichek, A., and Chassagne, C., 2019, Rheological analysis of mud from Port of Hamburg, Germany: Journal of Soils and Sediments, 1-10.
Shamsnia, S. H., Soltanpour, M., Bavandpour, M., and Gualtieri, C., 2019, A study of wave dissipation rate and particles velocity in muddy beds: Geosciences, 9(5), 212.
Sheremet, A., Jaramillo, S., Su, S.-F., Allison, M. A., and Holland, K. T., 2011, Wave-mud interaction over the muddy Atchafalaya subaqueous clinoform, Louisiana, United States: wave processes: Journal of Geophysical Research: Oceans, 116(C6).
Sheremet, A., and Stone, G. W., 2003, Observations of nearshore wave dissipation over mud sea beds: Jouranl of Geophysical Research, 108(11), 3357, doi:10.1029/2003JC00188.
Shynu, R., Rao, V. P., Samiksha, S. V., Kessarkar, P. M., Vethamony, P., Naqvi, S. W. A., Babu, M. T., and Dineshkumar, P. K., 2017, Suspended matter and fluid mud off Alleppey, southwest coast of India: Estuarine, Coastal Shelf Science, 185, 31–43.
Siadatmousavi, S. M., Allahdadi, M. N., Chen, Q., Jose, F., and Roberts, H. H., 2012, Simulation of wave damping during a cold front over the muddy Atchafalaya shelf: Continental Shelf Research, 47, 165–177.
Soltanpour, M., Shamsnia, S. H., Shibayama, T., and Nakamura, R., 2020, Experimental and analytical investigation of the response of a mud layer to solitary waves: Ocean Dynamics, 70(2), 165-186.
Tahvildari, N., and Kaihatu, J. M., 2011, Optimized determination of viscous mud properties using a nonlinear wave–mud interaction model: Journal of Atmospheric and Oceanic Technology, 28(11), 1486-1503.
Traykovski, P., Trowbridge, J., and Kineke, G., 2015, Mechanisms of surface wave energy dissipation over a high-concentration sediment suspension: Journal of Geophysical Research, 120(3), https://doi.org/10.1002/2014JC010245.
Tubman, M. W., and Suhayda, J. N., 1976, Wave action and bottom movements in fine sediments: ASCE, Proc. 15th ICCE (69), 1168–1183.
Van Kessel, T., and Kranenburg, C., 1998, Wave-induced liquefaction and flow of subaqueous mud layers: Coastal Engineering, 34, 109–127.
Wells, J. T., and Kemp, G. P., 1986, Interaction of surface waves and cohesive sediments: field observations and geologic significance, in Mehta, A. J. (Ed.), Lecture Notes on Coastal and Estuarine Studies, 14, Estuarine Cohesive Sediment Dynamics, 43–65.
Winterwerp, J. C., Boer, G. J. D., Greeuw, G., Greeuw, G., and Maren, D. S. V., 2012, Mud-induced wave damping and wave-induced.
liquefaction: Coastal Engineering, 64, 102–112
Winterwerp, J. C., de Graaff, R., Groeneweg, J., and Luijendijk, A., 2007, Modelling of wave damping at Guyana mud coast: Coastal Engineering, 54(3), 249–261.
Yamamoto, T., Koning, H., Sellmeijer, H., and van Hijum, E., 1978, On the response of a poro-elastic bed to water waves: Journal of Fluid Mechanics, 87, 193–206.