پیش‌بینی تلاطم هوای صاف در غرب ایران (مسیر پروازی تهران-‌ اهواز و تهران- اردبیل) با استفاده از شبیه‌سازی‌های مدل WRF

نوع مقاله : مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشجوی دکتری هواشناسی، موسسه ژئوفیزیک دانشگاه تهران، ایران

2 دانشیار، گروه فیزیک فضا، مؤسسه ژئوفیزیک دانشگاه تهران، ایران

3 استاد، گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، ایران

4 دانشیار، گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، ایران

10.30499/ijg.2020.235239.1277

چکیده

تلاطم هوای صاف پدیده‌ای جوّی است که می­تواند سلامت پرواز را به خطر اندازد و محدودیت­هایی را در مراقبت پرواز و عملیات هوانوردی ایجاد کند؛ ازاین‌رو با توجه به اینکه کشور ایران در منطقه غرب آسیا واقع است و به نوعی دروازه ورود به اروپای شرقی به شمار می­رود، به نظر می­رسد مطالعه پیش­بینی وقوع تلاطم هوای صاف روی کشور ضروری باشد. به‌این­منظور از شاخص­های تلاطم هوای صاف مانند عدد ریچاردسون، چینش قائم باد و شاخص داتن استفاده و با گزارش­های خلبان و نقشه­های هوانوردی راستی­آزمایی شد. سپس با استفاده از داده­های مدل GFS به‌عنوان ورودی مدل میان­مقیاس WRF و با سه دامنه تودرتو با تفکیک 2، 6 و 18 کیلومتری، پیش­بینی تلاطم هوای صاف برای بیست و چهار ساعت در منطقه غرب ایران، به‌ویژه در دو مسیر پروازی تهران به اردبیل (9 مارس 2018) و اهواز به تهران (24 آوریل 2018) برای هر دو روز صادر شد. این دو مسیر پروازی هر دو در مسیر رشته‌کوه­های البرز و زاگرس قرار دارند. نتایج نشان داد پیش­بینی CAT با استفاده از شاخص داتن و طرح‌واره لایه مرزی YSU، طرح‌واره­های کومولوسی KF و طرح‌واره­های میکروفیزیکی Lin و Kessler، پیش­بینی با استفاده از شاخص چینش قائم باد و طرح‌واره لایه مرزی MYJ، طرح­واره کومولوسی KF و طرح­واره میکروفیزیکی WSM3 و نیز پیش­بینی با استفاده از شاخص عدد ریچاردسون و طرح‌واره لایه مرزی MYJ و YSU، طرح‌واره کومولوسی KF و طرح‌واره فیزیکی Lin و WSM3 برای این دو مسیر پروازی بهترین عملکرد را داشته است. علاوه بر این، با توجه به سنجه­های راستی­آزمایی از بین شاخص­های معرف تلاطم هوای صاف،  برای مسیر پروازی تهران به اردبیل، با تفکیک افقی 18 کیلومتر، شاخص­های داتن، عدد ریچاردسون و چینش قائم باد و برای مسیر پروازی اهواز به تهران شاخص­های عدد ریچاردسون، داتن و چینش قائم باد بهترین کیفیت پیش­بینی تلاطم هوای صاف با شدت سبک تا متوسط را در نزدیکی رودبادهای همراه با ناوه و پشته­های جوّی سطوح 300 تا 200 هکتوپاسکالی دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of the clear air turbulence over western Iran (Tehran–Ahwaz and Tehran–Ardebil) using the WRF model simulations

نویسندگان [English]

  • Mohammad Mahdi Aryamanesh 1
  • Sarmad Ghader 2
  • Abbas_Ali Aliakbari Bidokhti 3
  • omid Alizadeh 4
1 Ph.D. Candidate, Space Physics Department, Institute of Geophysics, University of Tehran
2 Associate Professor, Space Physics Department, Institute of Geophysics, University of Tehran
3 Professor, Space Physics Department, Institute of Geophysics, University of Tehran, University
4 Associate Professor, Space Physics Department, Institute of Geophysics, University of
چکیده [English]

The clear air turbulence (CAT) is one of the atmospheric phenomena that can endanger the flights, and may creat restrictions in the flight surveillance. CAT can be defined as all turbulences in the free atmosphere (about >10000m AGL) of interest in aerospace operations that is not in or adjacent to visible convective activity. As Iran is located in the gate of southwest Asia and Eastern Europe, investigation of the occurrence of the CAT in Iran is essential. To this end, the CAT indices such as Richardson number, vertical wind shear and Dutton's index are calculated via post processing of outputs of the WRF model. Using the Global Forecast System (GFS) data as input to the Weather Research and Forecasting (WRF) model, prediction of the CAT is provided for a 24-hour lead time. The GFS data with 0.5 degree horizontal resolution are used as the initial and boundary conditions for running the WRF model, while reports of pilots and aviation maps are used to evaluate the model performance. The WRF model was run with a three nested domains with horizontal resolutions of 18, 6 and 2 km, respectively. The CAT is diagnosed for two flight routes over Iran area: Tehran to Ardabil on 9 March 2018 and Ahwaz to Tehran on 24 April 2018. Both of routes are embedded in the Alborz and Zagros mountains. Results indicate that the CAT can be better predicted using the Dutton when the YSU planetary boundary layer scheme, the KF Cumulus schemes and Lin and Kessler microphysics schemes are used in WRF model setup. Prediction of the CAT based on wind shear index is better achieved when the MYJ planetary boundary layer scheme, the KF Cumulus scheme and the WSM3 are employed in WRF model. Based on the Richardson index, the CAT is better predicted using the MYJ and YSU planetary boundary layer schemes, the KF cumulus scheme and the WSM3 and Lin microphysics schemes. Based on the results of the evaluations, for the horizontal resolution of 18 km, the best indices for the weak to moderate CAT are Richardson number index, vertical wind shear index and Dutton's index for the Tehran to Ardabil flight route, and Richardson number index, Dutton's index and vertical wind shear index for the Ahwaz to Tehran flight route. The CAT in these routes is accompanied with the upper-tropospheric (200 to 300 hPa) jet streams and troughs and ridges.

کلیدواژه‌ها [English]

  • Numerical Weather Prediction
  • WRF Model
  • Richardson Number
  • Clear air turbulence
آزادی، م.، تاج ‌بخش، س.، عربلی، پ.، علی اکبری بیدختی، ع.، 1385، مطالعه موردی تلاطم صاف روی ایران به کمک برخی از شاخص­های تلاطم در یک دوره 5 ماهه ( ژانویه- مه 2004): مجله فیزیک زمین و فضا، 32(1)، 85-102.
کلانتری، ب.، علی اکبری بیدختی، ع.، مبارک حسن، ا.، 1395، بررسی شکل­گیری امواج کوهستان (امواج بادپناه) بر فراز رشته‌کوه­های زاگرس و ناشی از آن (CAT) تلاطم هوای صاف: مجله فیزیک زمین و فضا، 2(43)، 451-459.
Baughman, E., 1946, Turbulence with the stable         lapse rate., Bull. American Meteorology.         Soc., 27, 459-462.   
Bresch, J. F., Power, J. G., and Manning, K., 2000, On the use of MM5 in an aviation weather forecast system: 9th international conference on aviation, range and aerospace meteorology, Florida, AMS, Boston, 105-109.
Colson, D. C., 1968: Clear Air Turbulence and Upper Level Meteorological Patterns, Plenum Press, N. Y. 337-360.
 
Donaldson, O., and Connor, V., 1975, Retelling a Classic and Finding Some Revisionist History:  Semantic scholar, 194, 301-498.
Dutton, J., and Panofsky, H. A., 1970, Clear Air Turbulence: A mystery may be unfolding: Science, 167, 937-944.
Dutton, M. J. O., 1980, Probability forecasts of clear-air turbulence based on numerical model output: Meteorological Magazine, 109, 293-304.
Ellrod, G. P., and Knapp, D. I., 1992, An objective clear-air turbulence forecasting technique: Verification and operational use: Weather Forecasting, 7, 150–165.
Fairal, C. W., and White, A. B., 1991, A stochastic model of gravity wave induced clear air turbulence: Journal of Atmospheric Sciences, 48, 1771-1790.
Jeffrey, E. P., and Knapp, D. I., 2007, Using WRF-ARW data to forecast turbulence at small scales: Battlefield Environment Division U.S. Army Research Laboratory White Sands Missile Range, New Mexico 88002.
Jung, H. K., and Hye, Y. C., 2010, A numerical study of Clear-Air Turbulence (CAT) encounters over South Korea on 2 April 2007: Journal of Applied Meteorology and Climatology, 49(12), 2381-2403.
Lester, P. F., 1993, Turbulence: Jepson Sanderson, Inc., 236 pp.
Madala, S., Srinivas, C. V., and Satyanarayana, A. N. V., 2018, Performance of WRF for simulation of mesoscale meteorological characteristics for air quality assessment over tropical coastal city, Chennai: Pure and Applied Geophysics, 175, 501–518.
Mancuso, R. L., and Endlich, R. M., 1966, Clear-air turbulence frequency as a function of wind shear and deformation: Monthly Weather Review, 94, 581–585.
 
McCann, D. W., 1993, An evaluation of clear-air turbulence indices: 5th international conference on aviation weather systems, Vienna, Virginia, American Meteorological Society, 449-453.
Miles, J. W., 1961, On the stability of heterogeneous shear flows: Journal of Fluid Mechanics, 10, 496–508.
Passner, D., and Knapp, I., 2007, Using WRF-ARW data to forecast turbulence at small scales‏:13th Conference on Aviation.
Passner, J., 2003, Post-Processing for the Battlescale Forecast Model and Mesoscale Model Version 5, ARL-TR-2988, White Sands Missile Range, 43pp.
Passner, J., 2014, Low-Level Turbulence Forecasts from Fine-Scale Models, ARL-TR-6847, White Sands Missile Range, NM 88002-5501, 55PP.
Sharman, R., Tebaldi, C., Wiener, G., and Wolff, J., 2006, An integrated approach to mid- and upper-level turbulence forecasting: Weather Forecasting, 21, 268–287.
Skamarock, W. C., Klemp, J. B., Dudhi, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G., 2008, A Description of the Advanced Research WRF Version 3: NCAR Technical note -475+STR.
Sousounis, P. J., and Fritsch, M., 1994, Lake-aggregate mesoscale disturbances. Part II: A case study of the effects on regional and synoptic-scale weather systems: Bulletin of the American Meteorological Society, 75(10), 1793–1812.
Stull, R. B., 1988, An Introduction to Boundary Layer Meteorology: Kluwer Academic Publisher, London, pp. 666.
Tajbakhsh, S., Aliakbari Bidokhti, A., and Azadi, M., 2006, Study of clear air turbulence over Iranian plato: Journal of Aerospace Science and Technology, 3(2), 87-95.
Trier, S. B., Sharman, R. D., Fovell, R. G., and Freilich, R. D., 2010, Numerical simulation of radial cloud bands within the upper-level outflow of an observed mesoscale convective system: Journal of Atmospheric Sciences, 67(9), 2990-2999.
Venkatesh, T. N., Mathew, J., and Ravi, S. N., 2014, Secondary instability as a possible mechanism for clear air turbulence: a case study: Meteorology and Atmopheric Physics, 126, 139–160.
Wilks, D., 2011, Statistical Methods in the Atmospheric Sciences, 100, 3rd Edition: Academic Press.
Zavarina, M. V., and Yundi, M. I., 1960, An accurate definition and use of the Richardson number of identification of zone of aircraft bumpiness: Meteorology. and Hydrology., 2, 3-10.