وارون‌سازی نامقید غیرخطی داده‌های مغناطیسی با استفاده از الگوریتم زیرمسئله ناحیه اعتماد

نوع مقاله : مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانش آموخته کارشناسی ارشد، موسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

2 استادیار موسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

10.30499/ijg.2020.222532.1255

چکیده

مقاله حاضر به وارون‌سازی نامقید غیرخطی داده­های مغناطیسی به کمک الگوریتم منطقه مورد اعتماد می­پردازد. روش­های معمول وارون‌سازی مبتنی بر ماتریس تغییرات و ماتریس هسین، در صورت انتخاب نامناسب مقدار اولیه، به کمینه­های محلی و درنتیجه، تخمین مدلی دور از واقعیت زمین منجر می­شوند. برای غلبه بر این مشکل، روش منطقه مورد اعتماد پیشنهاد می­شود که خواص همگرایی بسیار مناسبی دارد. در این الگوریتم، اطلاعات گردآوری­شده درباره تابع هدف، برای ساختن یک مدل ساده­تر از آن استفاده می­شود. در این روش، محدود کردن مدل به ناحیه اطراف نقطه کنونی، سبب می­شود مدل در آن ناحیه، رفتاری شبیه به تابع هدف داشته باشد؛ ازاین‌رو به جای کمینه­سازی تابع هدف می­توان مدل را در یک ناحیه کمینه کرد. در این مقاله، الگوریتم منطقه مورد اعتماد با روش لونبرگ- مارکوارت مقایسه می­شود که از یک الگوریتم جستجوی خطی بهره می­برد. برای­بهینه­سازی توابع استاندارد ریاضی - که علاوه بر کمینه سراسری، کمینه­های محلی نیز دارند- از الگوریتم مذکور استفاده شده است تا توانایی آن، بررسی و نتایج آن با روش جستجوی خطی نیوتن مقایسه شود. همچنین الگوریتم پیشنهادی برای وارون­سازی داده­های مصنوعی و واقعی بی­هنجاری مغناطیسی با اشکال هندسی گسل، استوانه و صفحه نازک به‌کار­گرفته شده و نتایج آن با نتایج وارون­سازی روش لونبرگ- مارکوارت مقایسه شده است. در هر دو حالت، مدل‌سازی عددی، کارایی و برتری این روش را نسبت به روش لونبرگ- مارکوارت به­ترتیب در بهینه­سازی و وارون­سازی نشان می­دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonlinear Unconstrained Inversion of Geomagnetic Data Using Sub-Problem Trust-Region Algorithm

نویسندگان [English]

  • Rouholah Faridi 1
  • Reza Ghanati 2
1 M.Sc. Graduated, Institute of Geophysics, University of Tehran, Tehran, Iran
2 Assistant Professor, Institute of Geophysics, University of Tehran, Tehran, Iran
چکیده [English]

This paper presents the application of the trust-region algorithm to an unconstrained non-linear inversion of magnetic data. Inversion of geophysical data aims at getting physical attributes or model parameters. Geophysical inverse problems can be generally solved using two approaches: global search methods and gradient-based methods. The global search methods approach a global optimum while the gradient-based methods approach a local optimum point. However, the cost of global search method is higher with a huge number of the model parameters. In gradient-based methods, which are based on Jacobian and Hessian matrix, choosing improper initial values may lead to local minimums, and consequently, estimation of a subsurface model which may be far from the reality of the earth. To overcome this issue, the trust-region algorithm is proposed. The proposed method possesses a high convergence rate and it crosses local minimums and its numerical computations are much less compared to global algorithms.
    To catch the new iteration in nonlinear problems, the line search and trust-region strategies are utilized. Both of these strategies usually employ the quadratic structure of the objective function and the Taylor expansion. They control descent condition with the step length and the search direction. The trust-region algorithm has proved to be more efficient and has better convergent properties especially for ill-posed inverse problems in comparison to the line search strategy. It has a potential to cover the global minimum under certain conditions. In trust-region method, an approximate model is constructed near the current iteration and the solution of the approximation model is taken as the next iteration. Compared to the line search algorithm, the trust-region method only trusts the approximate model in a region near the current iterate. This is reasonable, because for general non-linear functions, local approximate model scan only fits the original function locally. The region that the approximate model is trusted is called the trust-region. In the line search method, the search direction is first determined followed by the step length, while in the trust-region algorithm the step length is limited to the radius of trust-region followed by the determination of the search direction. Due to its strong convergence properties and robustness, trust-region methods have been studied in many disciplines.
    Similar to every geophysical approach, interpretation of geomagnetic data is along with non-uniqueness and identical magnetic responses could be produced by different geometric shapes, thus the existence of initial information based on geological data is mandatory to achieve the model near to the reality of earth. The assumption of stable magnetic susceptibility makes it possible to achieve nonlinear equations of simple shapes. In this paper, we used the trust-region algorithm to solve nonlinear inverse potential field problems stemmed from simple-shape anomalies. First, an algorithm that adjoins the trust-region method to least squares problems is presented. Then, to verify the efficiency of the proposed methods, some synthetic and real numerical experiments are provided. Comparing the results derived from the trust-region method and those of the Levenberg-Marquardt, we can discover that the proposed strategy outperforms the Levenberg-Marquardt algorithm in terms of the rate of convergence and accuracy. The paper is structured as follow: In section 2, the theory of the trust-region algorithm as well as an algorithm that links the trust-region algorithm to least-squares problems is presented. Section 3 consists of the verification of the performance of the trust-region algorithm in minimization of two standard mathematical benchmarks and synthetic and real magnetic data derived from simple-shape anomalies such as thin sheet, horizontal cylinder, and faults. Section 4 summarizes the results of this study.

کلیدواژه‌ها [English]

  • Nonlinear inversion
  • Trust-region algorithm
  • Levenberg-Marquardt method
  • Linear search method
Abdelazeem, M. M., 2013, Solving ill-posed magnetic inverse problem using a parameterized trust-region sub-problem: Contributions to Geophysics and Geodesy, 43(2), 99–123.
Abdelrahman, E. M., and Sharafeldin, S. M., 1996, An iterative least-squares approach to depth determination from residual magnetic anomalies due to thin dikes: Applied Geophysics, 34, 213–220.
Andrei, N., 2008, An unconstrained optimization test functions collection: Advanced Modeling and Optimization, 10(1), 147-161.
Aster, R. C., Borchers, B., and Thurber, C. H., 2013, Parameter Estimation and Inverse Problems: Elsevier, Amsterdam.
Atchuta, R. D., Ram Babu, H. V., and Sanker Narayan, P. V., 1980, Relationship of magnetic anomalies due to subsurface features and the interpretation of sloping contacts: Geophysics, 25, 32–36.
Azizi, H., Mehrabi, B., and Akbarpour, A., 2009, Genesis of Tertiary magnetite–apatite deposits, Southeast of Zanjan, Iran: Resource Geology, 59(4), 330-341.
Berghen, F. V., 2004, CONDOR: a constrained, non-linear, derivative-free parallel optimizer for continuous, high computing load, noisy objective functions: PhD. thesis, Universite Libre de Bruxelles, Faculte des Sciences Appliquees.
Boyd, S., and Vandenberghe, L., 2004, Convex Optimization: Cambridge.
Conn, A., Gould, N., and Toint, P., 2000, Trust Region Methods: Society for Industrial and Applied Mathematics (SIAM), Philadelphia PA.
Dan, H., Yamashita, N., and Fukushima, M., 2002, Convergence properties of the inexact Levenberg-Marquardt method under local
 
error bound: Optimization Methods and Software, 17(4), 605–626.
Ekinci, Y. L., 2016, MATLAB-based algorithm to estimate depths of isolated thin dike-like sources using higher-order horizontal derivatives of magnetic anomalies: SpringerPlus, 5(1).
Fan, J. Y., 2003, A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations: Computational Mathematics, 21(5), 625–636.
Fan, J., and Pan, J., 2006, Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound condition: Computational Optimization and Applications, 34(1), 47–62.
Fletcher, R., 1980, Practical Methods of Optimization, Volume 1: Unconstrained Optimization: John Wiley & Sons.
Gavin, H. P., 2017, The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems: Department of Civil and Environmental Engineering, Duke Unversity.
Gay, D. M., 1981, Computing optimal locally constrained steps: SIAM Journal on Scientific and Statistical Computing, 2(2), 186-197.
Gay, P., 1963, Standard curves for interpretation of magnetic anomalies over long tabular bodies: Geophysics, 28, 161–200.
Ghanati, R., Ghari, H. A., and Fatehi, M., 2017, Regularized nonlinear inversion of magnetic anomalies of simple geometric models using Occam’s method: an application to the Morvarid iron-apatite deposit Iran: Acta Geodaetica et Geophysica, 52(4), 555-580.
Ghanati, R., Ghari, H. A., Mirzaei, M., and Hafizi, M. K., 2015, Nonlinear inverse modeling of magnetic anomalies due to thin sheets and cylinders using Occam’s method: in 8th congress of the Balkan geophysical society, Chania, Greece.
Goldfeld, S. M., Quandt, R. E., and Trotter, H. F., 1966, Maximization by quadratic hill-climbing: Econometrica, 34, 541-551.
Grodzevich, O., 2004, Regularization using Parameterized Trust Region Sub-problem: M.Sc. thesis in mathematics, University of Waterloo, Ontario, Canada.
Gunn, P. J., 1997, Quantitative methods for interpreting aeromagnetic data: a subjective review: AGSO Journal of Australian Geology and Geophysics, 17(2), 105-113.
Hanke, M., 1997, A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems: Inverse Problems, 13(1), 79-95.
Kabanikhin, S. I., 2008, Definitions and examples of inverse and ill-posed problems: Journal of Inverse and Ill-Posed Problems, 16, 317–357.
Karush, W., 1939, Minima of Functions of Several Variables with Inequalities as Side Constraints: M.Sc. Dissertation, Department of Mathematics, University of Chicago, Chicago, Illinois.
Kuhn, H. W., Tucker, A. W., 1951, Nonlinear programming: Proceedings of 2nd Berkeley Symposium, Berkeley: University of California Press, 481–492.
Levenberg, K., 1944, A Method for the Solution of Certain Non-Linear Problems in Least Squares: Quarterly of Applied Mathematics, 2 (2), 164–168.
Marquardt, D., 1963, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, SIAM Journal on Applied Mathematics: 11 (2): 431–441.
Martinez, J. M., 1994, Local minimizers of quadratic functions on Euclidean balls and spheres: SIAM Journal of Optimization, 4(1), 159-176.
Mazaheri, M. S., Ghaderi, M., and Karimpour, M. H., 2010, Aliabad-Morvarid iron-apatite deposit, a Kiruna type example in Iran: 1st International Applied Geological Congress, Department of Geology at Islamic Azad University, Mashhad Branch, Iran.
Menke, W., 1984, Geophysical Data Analysis: Discrete Inverse Theory: Academic Press, Cambridge.
Moré, J. J., and Sorensen, D. C., 1983, Computing a trust region step: SIAM Journal on Scientific and Statistical Computing, 4(3), 553-572.
Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Peirce, J. W., Phillips, J. D., and Ruder, M. E., 2005, The historical development of the magnetic method in exploration: Geophysics, 70(6), 33-61.
Nocedal, J., and Wright, S. J., 1999, Numerical Optimization: Springer series in operations research edition.
Petrov, Y. P., and Sizikov, V. S., 2005, Well-Posed, Ill-Posed, and Intermediate Problems with Applications: Berlin, Boston: De Gruyter.
Powell, M. J. D., 1975, Convergence properties of a class of minimization algorithms: in Nonlinear Programming 2, 0. L. Mangasarian, R. R. Myer, and S. M. Robinsons, Eds., Academic Press, New York, 1-27.
Prakas Rao, T. K. S, Subrahmanyam, M., and Srikrishna Murthy, A., 1986, Nomograms for direct interpretation of magnetic anomalies due to long horizontal cylinders: Geophysics, 51(11), 2150–2159.
Raju, D. C. V., 2003, LIMAT: a computer program for least-squares inversion of magnetic anomalies over long tabular bodies: Computer and Geoscience, 29, 91–98.
Shan, Sh., 2008, A Levenberg-Marquardt Method For Large-Scale Bound-Constrained Nonlinear Least-Squares Master of Science thesis: The Faculty of Graduate Studies (Computer Science), The University of British Columbia.
Sorensen, D. C., 1980, Newton’s method with a model trust region modification: SIAM Journal on Numerical Analysis, 19(2), 409–426.
Stanley, J. M., 1977, Simplified gravity and magnetic interpretation of contact and dyke-like structures: Bulletin of the Australian Society of Exploration Geophysicists, 8(3), 60–64.
Telford, W. M., Geldart, L. P., and Sheriff, R. E., 1990, Applied Geophysics, 2nd Edition: Cambridge University Press, Cambridge.
Tikhonov, A. N., and Arsenin, V. Y., 1977, Solutions of Ill-Posed Problems: Winston and Sons, Washington DC.
Tlas, M., and Asfahani, J., 2011, Fair function minimization for interpretation of magnetic anomalies due to thin dikes, spheres and faults: Applied Geophysics, 75(1), 237-243.
Wang, Y., and Ma, Sh., 2009, A fast subspace method for image deburring: Applied Mathematics and Computation, 215, 2359–2377.
Wang, Y., and Yuan, Y., 2001, A trust region method for solving distribute parameter identification problems: Journal of Computational Mathematics, 21(6), 759-772.
Wang, Y., and Yuan, Y., 2005, Convergence and regularity of trust region methods for nonlinear ill-posed inverse problems: Inverse Problems, 21(3), 821–838.
Yamashita, N., and Fukushima, M., 2001, On the rate of convergence of the Levenberg-Marquardt method: Computing (Suppl.), 15, 239–249.
Yuan, Y., 2000, A review of trust region algorithms for optimization: in: Ball, J. M., Hunt, J. C. R. (eds.) ICIAM 99, Proceedings of the Fourth International Congress on Industrial and Applied Mathematics, 271–282, Oxford University Press, Oxford.
Yuan, Y., 2015, Recent advances in trust region algorithms: Mathematical Programming, 151(1), 249–281.