تخمین عمق و فاکتور شکل بی‌هنجاری‌های گرانی با شکل‌های ساده هندسی با استفاده از الگوریتم بهینه‌سازی ازدحام ذرات

نوع مقاله : مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشجوی دکتری، مؤسسة ژئوفیزیک دانشگاه تهران، تهران، ایران

2 استاد، مؤسسة ژئوفیزیک دانشگاه تهران، تهران، ایران

3 استادیار، دانشکده علوم کامپیوتر و ریاضیات، دانشگاه خوارزمی، تهران، ایران

چکیده

یکی از مهم‌ترین مسائل ژئوفیزیکی در اکتشاف کانسارهای معدنی، تخمین عمق ساختارهای مدفون با استفاده از داده­های مشاهده‌ای گرانی­سنجی است. در این مقاله با استفاده از یکی از روش­های هوشمند الگوریتم بهینه­سازی ازدحام ذرات، عمق توده­های بی­هنجاری گرانی با شکل­های هندسی ساده‌ای همچون کره، استوانه افقی و استوانه قائم تخمین زده می­شود. اینشکل­هایهندسیمی­تواننددرصدزیادیازبی‌هنجاری­هایزیر­سطحیراهمانند­سازیکنند.
الگوریتم بهینه­سازی ازدحام ذرات که ازجمله الگوریتم­های تکاملی است، الهام­گرفته از رفتار دسته­جمعی پرندگان برای یافتن غذا در فضا به‌صورت تصادفی است. به­علت یکتا نبودن جواب و همچنین وجود چندین کمینه محلی در حل مسائل وارون گرانی­سنجی، به‌کارگیری این الگوریتم برای وارون­سازی مناسب است. استفاده از الگوریتم­های تصادفی به‌جای الگوریتم­های قطعی می­تواند از رسیدن و توقف الگوریتم در یک مقدار محلی جلوگیری کند. در این پژوهش برای مدل­سازی داده­های گرانی با استفاده از روش PSO، دو پارامتر عمق (z) و فاکتور شکل (q) به‌عنوان ذرات در این الگوریتم فرض می­شوند و محدوده­های بیشینه و کمینه عمق، اطلاعات اولیه محسوب می­شوند. در این روش که برای داده­های مصنوعی بدون نوفه و آغشته به نوفه تصادفی 3%، 5% و 7% به‌کار­رفت، دقت برآورد پارامترهای هندسی خوب است. همچنین این روش برای داده واقعی مربوط به اکتشاف باریت در منطقه استان فارس نزدیک شهر آباده استفاده شد و عمق حاصل از روشPSO برابر با 15/8 متر به‌دست­آمد که با نتایج روش اویلر برای عمق و نتایج بررسی­های محلی انجام­گرفته با خاک‌برداری همخوانی خوبی نشان می­دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Depth and shape factor estimation of gravity anomalies with simple geometery using Particle Swarm Optimization algorithm

نویسندگان [English]

  • Marzieh Valieghbal 1
  • vahid ebrahimzadeh ardestani 2
  • Keyvan Borna 3
1 Ph.D Student, Institute of Geophysics, University of Tehran, Tehran, Iran
2 Professor, Institute of Geophysics, University of Tehran, Tehran, Iran
3 Assistant professor, Computer and Mathematics faculty, Kharazmi University
چکیده [English]

One of the most important geophysical problems in exploration of mineral deposits is to estimate the depth of buried structure using observed gravity data. In this paper, we are trying to estimate mass anomaly depth by using one of the intelligence methods as Particle Swarm Optimization (PSO) with simple shapes as sphere, horizontal and vertical cylinder. In this modeling, two parameters of depth (z) and shape factor (q) were considered as particles and the maximum and minimum depth were used as the prior information. The method is tested for synthetic models with random noise. The method gives precise results for synthetic models contaminated with random noise which is quite acceptable and promising.
    This technique was also successfully applied to real data for mineral exploration. The applied real data belongs to an area with hilly topography located in the Fars province close to the Abadeh city where the barite deposit is under exploration. The method is used for a profile of real data that is provided from the residual anomalies and passed from the main detected positive anomaly in the area. The estimated depth from this method was 8.15 m which was in good agreement with the results obtained through Euler method and also outcrop‐scale observations.

کلیدواژه‌ها [English]

  • Gravity interpretation
  • Particle Swarm Optimization
  • simple geometric bodies
  • Depth estimation
Barbosa,V. C. F., and Joao, B., 1994, Generalized compact gravity inversion: Geophysics, 59, 57-68.
Essa, K. S., 2010, A generalized algorithm for gravity or self potential data inversion with application to mineral exploration: 21st Australian Society of Exploration Geophysicists (ASEG) conference and exhibition, expanded abstracts, session: Innovations in Geophysical Inversion, 1, 1-4.
Essa, K. S., and Elhussein, M., 2018, PSO (Particle Swarm Optimization) for interpretation of magnetic anomalies caused by simple geometrical structures: Pure and Applied Geophysics, 175(10), 3539-3553.
Fernández-Álvarez, J. P., Fernández-Martínez, J. L., García-Gonzalo, E., and Menéndez-Pérez, C. O., 2006, Application of the particle swarm optimization algorithm to the solution and appraisal of the vertical electrical sounding inverse problem: 11th annual conference of the International Association of Mathematical Geology (IAMG'06), Liège, Belgium.
Fernández-Martínez, J. L., García-Gonzalo, E., Fernández Álvarez, J. P., Kuzma, H. A., and Menéndez Pérez, C. O., 2010a, PSO: a powerful algorithm to solve geophysics inverse problems, Application to a 1D-DC resistivity  case: Journal of Applied Geophysics, 71, 13–25.
Fernández-Martínez, J. L., García-Gonzalo, E., and Naudet, V., 2010b, Particle swarm optimization applied to solving and appraising the streaming-potential inverse problem: Geophysics, 75(4), WA3–WA15.
Jackson, D. D., 1979, The use of a priori data to resolve non-uniqueness in linear inversion: Geophysical Journal of the Royal Astronomical Society, 57, 137-157.
Keilis-Borok, V. I., and Yanovskaja, T. B., 1967, Inverse problems of seismology (structural review): Geophysical Journal International, 13(1-3), 223-234.
Kennedy, J., and Eberhart, R., 1995, Particle swarm optimization: Proceedings of the IEEE International Conference on Neural Networks, IV, 1942–1948.
Montesinos, F. G., Arnoso, J., and Vieira, R., 2005, Using a genetic algorithm for 3D inversion of gravity data in Fuerteventura (Canary Islands): International Journal of Earth Sciences, 92, 301-316.
Pallero, J. L. G., Fernández-Martínez, J. L., Bonvalot, S., and Fudym, O., 2015, Gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization: Journal of Applied Geophysics, 116, 180-191.
Pallero, J. L. G., Fernández-Martínez, J. L., Bonvalot, S., and Fudym, O., 2017, 3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization: Journal of Applied Geophysics, 139, 338-350.
Qiu, N., Liu, Q., and Gao, Q., 2009, Gravity data inversion based genetic algorithm and generalized least squares: IEEE, 1, 891-893.
Reid, A. B., Allsop, J. M., Granser, H., Millett, A. T., and Somerton, I. W., 1990, Magnetic interpretation in three dimensions using Euler deconvolution: Geophysics, 55(1), 80-91.
Santos, F. A. M., 2010, Inversion of self-potential of idealized bodies’ anomalies using particle swarm Optimization: Computers & Geosciences, 36(9), 1185-1190.
Sanyi, Y., Nan, T., Ye, Ch., Huafeng, L., and Zhipeng, L., 2008, Nonlinear geophysical inversion based on ACO with hybrid techniques: IEEE, Fourth international conference on natural computation.
Sanyi, Y., Shangxu, W., and Nan, T., 2009, Swarm intelligence optimization and its application in geophysical data inversion: Applied Geophysics, 6(2), 166–174.
Shaw, R., and Srivastava, S., 2007, Particle swarm optimization: A new tool to invert geophysical data: Geophysics, 72(2), F75-F83.
Singh, A., and Biswas, A., 2016, Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries: Natural Resources Research, 25(3), 297-314.
Snopek, K., 2005, Inversion of Gravity Data with Application to Density Modeling of the Hellenic Subduction Zone: PhD. Thesis, Department of Geosciences at the Ruhr University.
Thompson, D. T., 1982, EULDPH: A new technique for making computer-assisted depth estimates from magnetic data: Geophysics, 47(1), 31-37.