مقایسه روش‌های سطری و ستونی تبدیل هماهنگ کروی از درجه/مرتبه خیلی‌بالا

نوع مقاله : مقاله پژوهشی‌

نویسنده

استادیار، دانشکده مهندسی عمران دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

تبدیل هماهنگ کروی، ابزار استانداردی را برای تحلیل/ساخت طیفی داده­های ژئودتیکی و ژئوفیزیکی نظیر میدان ثقل و میدان مغناطیسی زمین، توپوگرافی و جوّ فراهم می­آورد. به لطف مأموریت­های اخیر فضایی نظیر SRTM، تفکیک مکانی داده­های زمین مرجع نظیر توپوگرافی، پیوسته رو به کاهش است که این موضوع، افزایش درجه/مرتبه مدل هماهنگ را در­پی­دارد. محاسبه توابع وابسته لژاندر در درجات بالا (2000n>) با مشکل عددی خطای پاریز روبه‌رو می­شود. برای رفع این مشکل، روش­های مختلف سطری و ستونی محاسبه توابع وابسته لژاندر در مطالعات پیشین پیشنهاد شده است. هدف از مطالعه حاضر، بررسی کارایی این روش­ها در تبدیل تحلیل و ساخت هماهنگ کروی است. الگوریتم سطری و ستونی تحلیل و ساخت هماهنگ کروی در یک نرم­افزار به زبان برنامه­نویسی فرترن و با توان پردازش موازی اجرا شده است. برای محاسبه توابع وابسته لژاندر در حالت سطری از روش بلیکوف (Belikov) و در حالت ستونی از روش حساب برد مبسوط (ERA) استفاده شد. نتایج عددی مبتنی بر نرم­افزار توسعه­داده­شده نشان می­دهد هر دو روش سطری و ستونی در بازه درجه/مرتبه 2160 تا 21600، دقت یکسانی در تبدیل هماهنگ کروی دارند. همچنین سرعت روش سطری نسبت به ستونی در پردازش سری و موازی به‌ترتیب 8/1 و 2/1 برابر سریع­تر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of row-wise and column-wise methods in ultra-high degree/order spherical harmonic transforms

نویسنده [English]

  • Mehdi Goli
Assistant Professor, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Spherical harmonic transform (SHT) provides a standard tool for spectral analysis of data measured on a spherical manifold particularly in geodesy and geophysics, such as Earth’s gravity/magnetic field, topography, atmosphere, etc. Thanks to recent satellite missions such as SRTM, the spatial resolution of geoscience data decreases, leading to an increase in the degree/order of spherical harmonic. The accurate and fast computation of fully normalized associated Legendre functions (fnALF) is the main part of spherical harmonic computations.In polar region, for high degrees (n>2000), the arithmetic underflow may occur and Extended Range Arithmetic (ERA) can be applied to fix underflow problem. In Belikov method the four terms row-wise reccurrence formula is used for fnALF computation without any numerical issues.
Previous studies have only addressed the efficiency of the ERA and Belikov method without mentioning to their performnace in spherical harmonic synthesis (SHS) and analysis (SHA). This study aims at investigating the effect of row-wise and colunm-wise fnALF on SHS/SHA for high harmonic degree/order. For this purpose, we developed parallel FORTRAN95 software that utilizes Belikov and ERA to perform fnALF in the row-wise and column-wise SHT, respectively. For SHA, exact Gauss-Legendre quadrature was used that allows one to determine the level error of SHT.
In the first part of numerical results, the computation time and error of Belikov and ERA methods for calculating fnALF are compared in serial and parallel processing. Based on the results of the developed software, Belikov method is approximately 2 times faster than ERA for degrees 2160 to 64800 in both serial and parallel mode. Also for mid-latitudes, the errors for both methods are nearly the same. In polar region the error in ERA grows, while Belikov method has not latitudinal dependencies. To evaluate the performance of fnALF method on error in SHS/SHA, calculations were performed using random spherical harmonic coefficients (Cnm , Snm) between [-1, +1]. Using SHS and SHA in a closed cycle, the computed coefficients (C׳nm , S׳nm) were compared with original coefficients (Cnm , Snm). The RMS and maximum error for different degrees from N=2160 to 21600 were computed. The level error of two methods in terms of RMS is in the same level. Numerical results show that in serial mode, the row-wise SHS/SHA is approximately 1.8 times faster than column-wise method. However, in parallel computing with 10 threads, the speed up factor decreases to about 1.2.
 

کلیدواژه‌ها [English]

  • Associated Legendre function
  • spherical harmonic transforms
  • Belikov method
  • Extended Range Arithmetic (ERA)
Balmino, G., Vales, N., Bonvalot, S., and Briais, A., 2012, Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies: Journal of Geodesy, 86(7), 499–520, https://doi.org/10.1007/s00190-011-0533-0534.
Belikov, M. V., 1991, Spherical harmonic analysis and synthesis with the use of column-wise recurrence relations: Manuscripta Geodaetica, 16(6), 384–410.
Bucha, B., and Janák, J., 2013, A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders: Computers & Geosciences, 56, 186–196, https://doi.org/https://doi.org/10.1016/j.cageo.2013.03.012.
Enomoto, T., 2015, Comparison of Computational Methods of Associated Legendre Functions: SOLA 11, 144–149.
Fukushima, T., 2012, Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers: Journal of Geodesy, 86(4), 271–285.
Heiskanen, W. H., and Moritz, H., 1967, Physical Geodesy: W.H. Freeman and Co., San Francisco.
Holmes, S. A., and Featherstone, W., 2002, A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions: Journal
 
     of Geodesy, 76(5), 279-299.
     Jekeli, C., 2017, Spectral Methods in Geodesy and Geophysics: CRC Press.
Jekeli, C., Lee, J. K., and Kwon, J. H., 2007, On the computation and approximation of ultra-high-degree spherical harmonic series: Journal of Geodesy, 8(9), 603-615.
Nesvadba, O., 2011, Nothing to Fear from Ellipsoidal Harmonics: General Assembly of the European Geosciences Union,Vienna, 3–8.
Novikova, E., and Dmitrenko, A., 2016, Problems and methods of calculating the Legendre functions of arbitrary degree and order: Geodesy and Cartography, 65(2), 283-132.
Prezeau, G., and Reinecke, M., 2010, Algorithm for the evaluation of reduced Wigner matrices: The Astrophysical Journal Supplement Series, 190(2), 267-274.
Reinecke, M., 2011, LibpSHT–algorithms for efficient spherical harmonic transforms: Astronomy & Astrophysics, 526, A108.
Rexer, M., and Hirt, C., 2015, Ultra-high-degree surface spherical harmonic analysis using the Gauss–Legendre and the Driscoll/Healy quadrature theorem and application to planetary topography models of Earth, Mars and Moon: Surveys in Geophysics, 36(6), 803–830, https://doi.org/10.1007/s10712-015-9345-z.
Schaeffer, N., 2013, Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations: Geochemistry, Geophysics, Geosystems, 14(3), 751–58, https://doi.org/10.1002/ggge.20071.
Sneeuw, N., 1994, Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective: Geophysical Journal International, 118(3), 707–716, https://doi.org/10.1111/j.1365-246X.1994.tb03995.x.
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., and Wessel, P., 2019, Global bathymetry and topography at 15 arc Sec: SRTM15+: Earth and Space Science, 6(10), 1847–1864.
Wieczorek, M. A., and Meschede, M., 2018, SHTools: Tools for working with spherical harmonics: Geochemistry, Geophysics, Geosystems, 19(8), 2574–2592, https://doi.org/10.1029/2018gc007529.
Wittwer, T., Klees, R., Seitz, K., and Heck, B., 2008, Ultra-high degree spherical harmonic analysis and synthesis using Extended-Range Arithmetic: Journal of Geodesy, 82(4), 223–229.
Xing, Z., Li, S., Tian, M., Fan, D., and Zhang C. J., 2020, Numerical experiments on column-wise recurrence formula to compute fully normalized associated Legendre functions of ultra-high degree and order: Journal of Geodesy, 94(1), id. 2.