وارون‌سازی مشترک داده‌های گرانی‌سنجی و مقاومت ویژه الکتریکی در ارزیابی ساختار سنگ کف آبخوان‌ها (مطالعه موردی: بخشی از دشت قطروم در ایران)

نوع مقاله : مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشیار، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

2 دانشجوی دکتری، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

10.30499/ijg.2020.226235.1262

چکیده

شناخت سنگ کف آبخوان­ها از لحاظ جنس، عمق و ساختار هندسی در مدیریت منابع آبی اهمیت زیادی دارد و مورد توجه کارشناسان و مدیران این حوزه است. از سال­های دور تاکنون از روش­های ژئوفیزیکی مختلفی برای این منظور استفاده شده است. استفاده از این روش­ها به تنهایی ابهاماتی دارد؛ به‌کار­بردن چند روش مختلف ژئوفیزیکی به‌صورت ترکیبی می­تواند از خطاهای احتمالی در تفسیر داده­ها بکاهد. در این پژوهش، با استفاده از حل مسائل نامعین، ‌یک قالب برای وارون­سازی مشترک داده­های مقاومت ویژه الکتریکی و گرانی­سنجی طبق روابط تجربی موجود ارائه می­شود. بر اساس فیزیک مسئله و حل معادلات در دستگاه معادلات مشتقات جزئی، مدل‌سازی پیشرو و وارون­سازی هر‌یک از روش­ها به همراه وارون­سازی مشترک آنها در نرم­افزار کامسول اجرا شد. همچنین برای کاهش زمان محاسبه ماتریس حساسیت که بیشترین زمان را در مسائل وارون صرف می‌کند، از توابع کمکی برای حل این ماتریس استفاده شد. ابتدا مدل‌سازی روی‌ یک مدل مصنوعی آبخوان و سپس روی داده­های گرانی­سنجی و مقاومت ویژه واقعی اجرا شد که در بخشی از دشت قطروم واقع در جنوب شرق شهر‌ یزد، در طول ‌یک مقطع برداشت شده بودند. نتایج این تحقیق نشان داد وارون­سازی مشترک داده­های مقاومت ویژه الکتریکی و گرانی­سنجی به‌مراتب دقیق‌تر از تفسیر ‌یگانه هر‌یک از این روش­ها است. همچنین علاوه بر انعطاف­پذیری و سرعت پردازش زیاد در محاسبه ماتریس حساسیت نسبت به روش­های وارون­سازی معمولی، این روش می­تواند در محدوده وسیعی از داده­های ژئوفیزیکی ‌یا هیدروژئولوژیکی استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Gravity–Geoelectric joint inversion to recognize the bedrock structure of aquifers (case study: part of Qotrum plain in Iran)

نویسندگان [English]

  • Abdolhamid Ansari 1
  • Ali Pasyar 2
  • Ahmad Ghorbani 1
1 Associate Professor, Faculty of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
2 Ph.D student, Faculty of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
چکیده [English]

In water resources management, correct identification of bedrock characteristics, such as type, depth and structure is useful and various geophysical methods are used for this purpose. In geophysical and subsurface investigations, solving inverse problems using physics of the problem in partial differential equation (PDE) system is very important. Inverse modeling is one of the useful solutions which creates a logical model between observed and measured values. The limitations and ambiguity of individual techniques can be significantly reduced by adopting joint inversion schemes. Using inversion approaches which combine two or more geophysical methods, allows substantial improvements in modeling processes. The joint inversion of different electromagnetic and resistivity data sets in hydrogeology, structural geology and mining has been used in some studies but the gravity method is less used in hydrogeological investigations. One example of using gravity method in previous studies is an algorithm for joint inversion of gravity and resistivity data, where the interfaces corresponding to changes in the bulk density were interpreted as interfaces of porosity and water content changes, i.e. interfaces of electrical resistivity changes.
   In this paper, we present a framework for joint inversion of gravity and geoelectric data solving under-determined inverse problems. It can be used in a wide range of physical systems governed by PDEs. The integrated approach is based on the connection between density and resistivity of a sedimentary sequence through the porosity. Also, we present a general adjoint state formulation which may be used in this framework. It increases the calculation speed of sensitivity matrices in a variety of commonly encountered under-determined problems. There are two steps in this research. First, 2D joint inversion of gravity and geoelectric data is run and validated in COMSOL multi-physics software using one synthetic model and synthetic data in a forward modeling process. Afterwards, using real gravity and geoelectric data surveyed along a cross-section in part of the Qotrum plain in the SE Yazd, the lateral structure of bedrock is estimated. Because Qotrum basin is already well surveyed, it offers opportunities for evaluation of accuracy and reliability in joint inversion approaches. Fifty-one gravity stations and eleven vertical electrical soundings were carried out across the central part of this basin to apply the proposed joint inversion. The results indicated that gravity-geoelectric joint inversion is more accurate than the individual interpretation of each of these methods and significantly improves the solution by decreasing the ambiguity of models. Furthermore, this method, while high in computational speed, can be used in modeling of a wide range of geophysical, hydrogeological and physical systems governed by the partial differential equation laws.

کلیدواژه‌ها [English]

  • Joint inversion
  • Electrical resistivity
  • Gravity
  • COMSOL
  • Bedrock
  • Qotrum
پاسیار، ع.، انصاری، ع.، 1396، بررسی هدایت هیدرولیکی و ضریب قابلیت انتقال آب با استفاده از مقاومت ویژه الکتریکی و آزمایش پمپاژدر دشت پیرانشهر: مجله پژوهش آب ایران، 11(4)، 21-13.
 
 Abdelrahman, E. M., Bayoumi, A. I., Abdelhady, Y. E., Gobash, M. ., and EL-Araby, H. M., 1989, Gravity interpretation using correlation factors between successive least-squares residual anomalies: Geophysics, 54, 1614–1621.
Alvarez, R., 1991, Geophysical determination of buried geological structures and their influence on aquifer characteristics: Geoexploration, 27, 1–24.
Archie G., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics: Petroleum Transactions of the American Institute of Mineralogical and Metallurgical Engineers, 146, 54–62.
Bowin, C., Scheer, E., and Smith, W., 1986, Depth estimates from ratios of gravity, geoid and gravity gradient anomalies: Geophysics, 51, 123–136.
Butler, S. L., and Sinha, G., 2012, Forward modeling of applied geophysics methods using Comsol and comparison with analytical and laboratory analog models: Computers & Geosciences, 42, 168–176.
Cardiff, M., and Kitanidis, P. K., 2008, Efficient solution of nonlinear, underdetermined inverse problems with a generalized PDE model: Computers & Geosciences, 34, 1480–1491.
Elawadi, E., Salem, A., and Ushijima, K., 2001, Detection of cavities from gravity data using a neural network: Exploration Geophysics, 32, 75–79.
Grant, F. S., and West, G. F., 1965, Interpretation Theory in Applied Geophysics: McGraw-Hill, New York, 584 pp.
Gupta, O. P., 1983, A least-squares approach to depth determination from gravity data: Geophysics, 48, 360–375.
Hartmann, R. R., Teskey, D., and Friedberg, I., 1971, A system for rapid digital aeromagnetic interpretation: Geophysics, 36, 891–918.
Jackson, J. D., 1998, Classical Electrodynamics: Wiley, New York.
Kemna, A., 2000, Tomographic Inversion of Complex Resistivity: Theory and Application: Ph.D. Thesis, Bochum Ruhr-University, Germany.
Kilty, T. K., 1983, Werner deconvolution of profile potential field data: Geophysics, 48, 234-237.
Kitanidis, P. K., 1995, Quasi-linear geostatistical theory for inversing: Water Resources Research, 31(10), 2411–2419.
Kozeny, J., 1953, Hydraulics: Springer, Vienna, 574 p.
Lines, L. R., and Treitel, S., 1984, A review of least-squares inversion and its application to geophysical problems: Geophysical Prospecting, 32, 159–186.
Marı´n-Lechado, C., Galindo-Zaldivar, J., Rodrı´guez-Ferna´ndez, L. R., and Pedrera, A., 2006, Mountain front development by folding and crustal thickening in the internal zone of the Betic Cordillera-Alboran Sea boundary: Pure and Applied Geophysics, 164, 1–21.
McCulloh, T.  H., 1967, Mass properties of sedimentary rocks and gravimetric effects of petroleum and natural gas reservoir: USGS Professional Paper 528-A, 50 pp.
Mohan, N. L., Anandababu, L., and Roa, S., 1986, Gravity interpretation using the Melin transform: Geophysics, 51, 114–122.
Nettleton, L. L., 1962, Gravity and magnetics for geologists and seismologists: AAPG, 46, 1815–1838.
Nettleton, L. L., 1976, Gravity and Magnetics in Oil Prospecting: McGraw-Hill Book Co.
Odegard, M. E., and Berg, J. W., 1965, Gravity interpretation using the Fourier integral: Geophysics, 30, 424–438.
Salem, A., Elawadib, E., and Ushijima, K., 2003, Depth determination from residual gravity anomaly data using a simple formula: Computers & Geosciences, 29, 801–804.
Santos, F. A. M., Sultan, S. A., Represas, P., and El Sorady, A. L., 2006, Joint inversion of gravity and geoelectrical data for groundwater and structural investigation: application to the northwestern part of Sinai, Egypt: Geophysical Journal International, 165, 705–718.
Schön, J. H., 2004, Physical Properties of Rocks: Elsevier, Amsterdam, 512 p.
Sharma, B., and Geldart, L. P., 1968, Analysis of gravity anomalies of two-dimensional faults using Fourier transforms: Geophysical Prospecting, 16, 77–93.
Shaw, R. K., and Agarwal, B. N. P., 1990, The application of Walsh transforms to interpret gravity anomalies due to some simple geometrically shaped causative sources: a feasibility study: Geophysics, 55, 843–850.
Telford, W. M., Geldart, L. P., and Sheriff, R. E., 1990, Applied Geophysics, 2nd Ed.: Cambridge University Press, Cambridge.
Thompson, D. T., 1982, EULDPHea new technique for making computer-assisted depth estimates from magnetic data: Geophysics, 47, 31–37.