مدل‌سازی سه‌بعدی مقاومت صوتی با استفاده از روش شبیه‌سازی نوارهای دوار در یکی از میدان‌های جنوب غربی

نوع مقاله : مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشجوی دکتری، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

2 محقق، کوکولینک (زیر مجموعه دانشگاه ملی سئول)، کره جنوبی

3 استادیار، دانشکده مهندسی نفت دانشگاه صنعتی سهند تبریز، تبریز، ایران

4 استادیار، دانشکده معدن و علوم زمین، دانشگاه نظربایف، نورسلطان، قزاقستان

5 استادیار، دانشکده معدن دانشگاه صنعتی بیرجند، بیرجند، ایران

چکیده

روش­های شبیه­سازی تصادفی زمین­آماری، امکان تولید مدل­های دو یا سه بعدی ویژگی­های مخزنی را با استفاده از داده­های موجود در محل چاه­ها فراهم می­کنند. در این تحقیق، مدل­سازی سه­بعدی مقاومت صوتی با استفاده از روش زمین­آماری شبیه­سازی نوارهای دوار (TBSim) انجام شده است. اساس روش نوارهای دوار، ساده­سازی فرایند شبیه­سازی زمین­آماری یک مسئله در فضای دو یا سه بعدی به مجموعه‌ای از شبیه‌سازی­های یک­بعدی در راستای تعدادی خطوط با استفاده از توابع سینوسی است. روش نوارهای دوار روشی سریع و قدرتمند است و خصوصیات زمین­آماری را با دقت زیادی بازتولید می­کند. در مطالعه حاضر، جهت تولید مدل­های سه­بعدی مقاومت صوتی در یکی از میدان­های نفتی جنوب غربی ایران، از این روش استفاده و با نتایج وارون­سازی لرزه‌ای مقایسه شده است. داده­های مورد استفاده در این روش شامل نگارهای مقاومت صوتی هفت چاه این میدان است که یکی از چاه­ها جهت بررسی میزان درستی و دقت نتایج از محاسبات کنار گذاشته شده است. نتایج حکایت از همبستگی زیاد مقادیر مدل­سازی­شده با داده­های واقعی مقاومت صوتی در محل چاه آزمایش و نیز مدل حاصل از وارون­سازی لرزه‌ای دارد. همچنین بررسی و مقایسه بافت­نگار نتایج با بافت‌نگار­های داده­های واقعی و بافت‌نگار مدل وارون­سازی لرزه‌ای، نشان از توانایی این روش در بازتولید ویژگی­های آماری داده­ها دارد. به‌علاوه، نتایج تحلیل عدم قطعیت مدل­های تولید­شده تأییدی بر مطمئن بودن این مدل­ها به‌ویژه در محل چاه آزمایش است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

3D Acoustic impedance modeling using turning bands simulation method in an oil field in SW of Iran

نویسندگان [English]

  • Mehdi Sadeghi 1
  • Navid Amini 2
  • Reza Falahat 3
  • Nasser Madani 4
  • Hamid Sabeti 5
1 Ph.D Student, Institute of Geophysics, University of Tehran, Tehran, Iran
2 Researcher, CoCoLink (Subsidiary of Seoul National University), South Korea
3 Assistant Professor, Sahand University of Technology, Tabriz, Iran
4 Assistant Professor, School of Mining and Geosciences, Nazarbayev University, Nur-Sultan city, Kazakhstan
5 Assistant professor, Department of Mining Engineering, Birjand University of Technology, Birjand, Iran
چکیده [English]

Petrophysical reservoir properties are usually estimated from elastic properties such as acoustic impedance (AI) using petro-elastic models. AI data are only available at sparse well locations, especially in early exploration stages of oil fields and therefore to quantify the spatial reservoir properties, it is necessary to estimate the AI for the rest of the reservoir area. Alongside the deterministic seismic inversion methods, multi-realization geostatistical simulation approaches can be used for the parameter estimations and uncertainty quantification. Geostatistical simulation methods allow the production of two- or three dimensional models of reservoir properties using existing well log data. Conventionally, sequential Gaussian simulation (SGS) method is used because of its simplicity. However, its accuracy is not always guaranteed. Nowadays, turning bands simulation method (TBSim) has received much attention because of its capability to reproduce the statistical properties of the original data. The main principle behind the TBSim is simplifying a multi-dimensional geostatistical simulation problem into a set of fast 1D simulation problems. The simulations are performed along the uniformly distributed lines spanning a unit sphere using sinusoid functions.
    In this study, we are going to generate 3D AI models in an oil field in SW of Iran via the TBSim. We will also compare the results with the AI data computed from seismic inversion. Geostatistical modeling has less computational complexity than seismic inversion. Although AI modeling cannot be used as a definite alternative to seismic inversion, it can be used as a primary method for estimating AI, especially in areas without seismic data. It also has the capability to be involved with some seismic inversion methods known as stochastic seismic inversion methods. The dataset used in this study includes AI logs of seven wells, one of which (known as test well) has been excluded from calculations to check the accuracy of the results. The study reservoir zone includes the Ahwaz sandstone member in the upper part of Asmari formation and also the lower carbonates. The lower carbonates of Asmari formation are separated by an unconformity with Jahrum formation. After constructing the structural model and upscaling the AI logs in it, 50 realizations of AI are generated in the gridded model. The results in the test well indicate a high correlation between the modeled values and real AI data as well as the model obtained by seismic inversion. The maximum correlation of AI values of different realizations with real values in the test well equals to 78.8%. The correlation coefficient achieves to 82.9 % for mean of realizations and is 72.8% for seismic inversion data. The cube of mean of realizations is also in good agreement with the seismic inversion cube and reproduces the dominant trend of vertical and lateral AI variations. Comparison of results histogram with real data as well as the seismic inversion data reveals the capability of geostatistical AI modeling in reproducing the statistical properties of original data. In addition, the results of the uncertainty analysis of produced models also confirm the reliability of these models, especially in the test well. Therefore, we would recommend the TBSim as a powerful method for AI modeling during reservoir characterization.

کلیدواژه‌ها [English]

  • Acoustic Impedance Modeling
  • Turning Bands Simulation
  • Geostatistical simulation
  • Variogram
خسروتهرانی، خ.، 1389، چینه­شناسی ایران: انتشارات دانشگاه تهران، چاپ سوم، تهران، ایران.
فرد لزرجانی، س.، کمالی، م. ر.، کدخدایی، ع.، صبحی، ق.، 1395، مدل‌سازی سه­بعدی تخلخل با استفاده از روش شبیه­سازی گوسی متوالی در یکی از میادین نفتی خلیج فارس: پژوهش نفت، 87، 88-95.
محمدحسینی، م.، طباطبایی، ه.، عمرانی، م.، توکلی، م.، 1398، مدل­سازی سه­بعدی تراکم شکستگی­ها با استفاده از اطلاعات نشانگرهای لرزه‌ای سه­بعدی و نمودارهای تصویرگر در یکی از میادین نفتی ایران: اکتشاف و تولید نفت و گاز، 164،45-51.
Abdollahie Fard, I., Braathen, A., Mokhtari, M., and Alavi, S. A., 2006, Interaction of the Zagros fold-thrust belt and the Arabian-type, deep-seated folds in the Abadan plain and the Dezful embayment, SW Iran: Petroleum Geoscience, 12, 347–362.
Arroyo, D., and Emery, X., 2017, Spectral simulation of vector random fields with stationary Gaussian increments in d-dimensional Euclidean spaces: Stochastic Environmental Resources Risk Assessment, 31, 1583–1592.
Deutsch, C. V., and Journel, A. G., 1998, GSLIB: Geolstatistical Software Library and User's Guide: Oxford University Press, New York.
Doyen, P., 2007, Seismic Reservoir Characterization: An Earth Modelling Perspective (EEET 2): EAGE.
Dubrule, O., 2003, Geostatistics for seismic data integration in earth
 
      models: SEG/EAGE distinguished instructor short course.
Emery, X., and Lantuéjoul, C., 2006, TBSIM: a computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method: Computers & Geosciences, 32(10), 1615-1628.
Emery, X., and Silva, D. A., 2009, Conditional co-simulation of continuous and categorical variables for geostatistical applications: Computers & Geosciences, 35(6), 1234–1246.
Eze, P. N., Madani, N., and Adoko, A. C., 2019, Multi-variate mapping of heavy metals spatial contamination in a Cu–Ni exploration field (Botswana) using turning bands co-simulation algorithm: Natural Resources Research, 28(1), 109-124.
Francis, A., 2006, Understanding stochastic inversion: part 1, First Break, 24, 69-77.
Haas, A., and Dubrule, O., 1994, Geostatistical inversion: A sequential method of stochastic reservoir modeling constrained by seismic data: First Break, 12, 561–569.
Lantuejoul, C., 2002, Geostatistical Simulation, Models and Algorithms: Springer-Verlag, Berlin, 256 p.
Matheron, G., 1973, The intrinsic random functions and their applications: Advances in Applied Probability, 5, 439–468.
Nazari Ostad, M., Emami Niri, M., and Darjani, M., 2018, 3D modeling of geomechanical elastic properties in a carbonates and stone reservoir: A comparative study of geostatistical co-simulation methods: Journal of Geophysics and Engineering, 15(4), 1419-1431.
 
Nussbaumer, R., Mariethoz, G., Gravey, M., Gloaguen, E., and Holliger, K., 2018, Accelerating sequential Gaussian simulation with a constant path: Computers & Geosciences, 112, 121-132.
Oldenburg, D.W., Scheuer, T., and Levy, S., 1983, Recovery of the acoustic impedance from reflection seismograms: Geophysics, v. 48, 1318-1337.
Paravarzar, S., Emery, X., and Madani, N., 2015, Comparing sequential Gaussian and turning bands algorithms for cosimulating grades in multi-element deposits: Comptes Rendus Geoscience, 347, 84–93.
Pyrcz, M. J., Gringarten, E., Frykman, P., and Deutsch, C. V., 2006, Representative input parameters for geostatistical simulation, in Coburn, T. C., Yarus, J. M., and Chambers, R. L, eds., Stochastic Modeling and Geostatistics: Principles, Methods, and Case Studies, Volume II: American Association of Petroleum Geologists, 5, Tulsa-Oklahoma.
Sabeti, H., Moradzadeh, A., Doulati Ardejani, F., Azevedo, L., Soares, A., Pereira, P., and Nunes, R., 2017, Geostatistical seismic inversion for non-stationary patterns using direct sequential simulation and co-simulation: Geophysical Prospecting, 65(1), 25–48.
Sadeghi, M., Amini N., Falahat, R., Sabeti, H., and Madani, N., 2019, 3D Acoustic impedance modeling using turning bands co-simulation and linear multi-attribute transform: 81st EAGE Conference and Exhibition, London.
Soares, A., Diet, J. D., and Guerreiro, L., 2007, Stochastic inversion with a global perturbation method: EAGE Petroleum Geostatistics, Cascais, Portugal, 10–14.
Wackernagel, H., 2003, Multi-Variate Geostatistics: An Introduction with Applications: Springer, Berlin, Heidelberg.