بررسی دوتفسیر از یک گسله در شمال تهران

نوع مقاله : مقاله پژوهشی‌

نویسنده

دانشیار پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله، تهران، ایران

چکیده

اختلاف ارتفاع ناگهانی در مرز سنگ و آبرفت در شمال تهران، مرزی است که بخش سنگی ائوسن را از سازند آبرفتی پلیوکواترنری و جوان­تر در بخش کوهپایه و دشت جدا می­کند. برخی از پژوهشگران این مرز را که با نام راندگی شمال تهران معرفی شده است، یک ساختار اصلی می­دانند که مسئول برخاستگی ارتفاعات البرز در شمال تهران است. این مرز را نباید با گسله شمال تهران اشتباه گرفت؛ زیرا این واژه سازوکار متفاوتی را به غیر از راندگی دربر­می‌گیرد. این پژوهش به‌طور ویژه به بررسی مرز سنگ و آبرفت در شمال تهران می­پردازد. اگر این مرز شامل یک ساختار اصلی شود، پرسش مهم پویایی (فعالیت) آن از دیدگاه خطر زمین‌لرزه مطرح می­شود. جهت بررسی این موضوع، صفحه­های گسلی و خط‌خش­های مرتبط با آن در مرز سنگ و آبرفت بررسی شدند. دو ویژگی از این صفحه­های گسلی به‌دست­آمد. ویژگی اول این است که مرز سنگ و آبرفت به یک روند مشخص گسلی وابسته نیست و از روندهای مختلف گسلی شمال باختری، شمالی- جنوبی، خاوری- باختری و شمال خاوری تبعیت می­کند. در بسیاری از نقاط، مرز سنگ و آبرفت (راندگی شمال تهران) زیر پوشش ریزش­های سنگی پنهان شده است که دسترسی به این مرز را ناممکن می‌کند. مرز ریزش­های سنگی با آبرفت­ها گسلیده است و شواهد سینماتیک آنها با تنش عهد حاضر همخوان است. این پدیده نشان می­دهد دگرشکلی در شمال تهران در راستای یک گسله مشخص متمرکز نیست و بیشتر به شکل نامتمرکز در پهنه وسیعی در شمال تهران کارسازی می‌کند. ویژگی دوم این است که راندگی شمال تهران یک ساختار اصلی نیست و درنتیجه، نمی­تواند تنها مسبب بالا راندن ارتفاعات سنگی در فرادیواره راندگی شمال تهران باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of two interpretations of a fault in northern Tehran

نویسنده [English]

  • mohammadreza Abbassi
Associate Professor International Institute of Earthquake Engineering and Seismology Tehran, Iran
چکیده [English]

The abrupt topographical change in northern Tehran divides the Eocene rock formation from Quaternary and Plio-Quaternary alluvial deposits situated in the piedmont and the plain. This phenomenon has been interpreted differently by two Geologists in the 70's and 80's. The term North Tehran Fault (NTF) is the first interpretation of rock-alluvium boundary, coined by Tchalenco (1975). According to this interpretation consist the NTF of the fault system, arranged in an en-echelon manner, not necessarily forming the rock-alluvium boundary in northern Tehran. A later interpretation, by joining all the fault systems, as a single line, called North Tehran Thrust (NTT). According to this interpretation forms (NTT) a single line, defining the boundary of rock-alluvium in northern Tehran (Berberian et al., 1983), not confusing with North Tehran Fault (NTF). The mentioned two interpretations of faulting in northern Tehran include two different faulting mechanisms opposing each other diagonally. By time are the two interpretations wrongly melted together as (NTF) and were used by several authors without paying attention to its original meaning interpreted by Tchalenko (1975).
In later works (Langraf et al., 2009; Ritz et al., 2012) is (NTF) the main structure responsible for the rising of highly elevated rock formation in the hanging wall of North Tehran Thrust (NTT).
The present study deals strictly with the boundary of rock and alluvium in northern Tehran, which was called (NTT). Kinematic study along the contact of rock and alluvium revealed two characteristic features: 1- Rock-Alluvium boundary occurs not along with a single faulting trend, it is rather arranged along NW-, N-S, E-W, and NE-striking faults. 2- Obtained stress direction associated with fault plane solution show different directions.
In many places is the NTT covered by rock slides, obscuring the trace of the rock-alluvium boundary. Older rockslides are thrusted over alluvium units of different ages. The contact of such boundaries shows striations compatible with present-day stress direction. The slow deformation rate in northern Tehran is not concentrated along a single fault. Therefore, it seems that absorbed deformation in northern Tehran is distributed over a wide range adjacent to the rock-alluvium boundary. These observations suggest an unrecognized fault, which needs more careful geological and seismological study.
Considering the three different trends of NTT, namely NW-, E-W- and NE-trending, no fold axis run parallel to those trends. The results obtained in this study suggest the NTT is not a major fault and in addition, it could not be regarded as a single fault responsible for the rising of the rock formation on the hanging wall of NTT in northern Tehran.

کلیدواژه‌ها [English]

  • North Tehran Fault
  • kinematics
  • rock sliding
  • rock-alluvium contact
  • mountain front faulting
بربریان، م.، قریشی، م.، ارژنگ روش، ب.، مهاجر، الف.، 1364. پژوهش و بررسی ژرف نوزمینساخت، لرزه زمین ساخت و خطر زمین لرزه – گسلش در گستره تهران و پیرامون ( پژوهش و بررسی لرزه زمین ساخت ایرا زمین : بخش پنجم) ، سازمان زمین شناسی کشور، گزارش شماره 56.
حسینی، ح.، 1376، تعیین رابطه چین خوردگی و  گسلش در سازند هزار دره از جاجرود در شرق تهران تا قزوین، پایانامه کارشناسی ارشد، دانشگاه تربیت مدرس، 156 صفحه.
یمینی­فرد، ف.، مرادی، ع.، حسینی، م.،  نوروزی، م.، 1388، مطالعه لرزه­خیزی تهران بزرگ و مجاورت آن با استفاده از داده­های ثبت­شده در شبکه لرزه­نگاری تهران: فصلنامه علوم زمین، 19(73133-138.
Abbassi, M. R. and Farbod,Y., 2009. Faulting and folding in Quaternary deposits of Tehran's piedmont (Iran). Asian Journal of Science, doi: 10.1016/j.jseaes.2008.08.001.
Abbassi,M,R. and Shabanian, E., 2021. Stress field evolution recorded by tectono-stratigraphy of Quaternary deposits of the southern flank of the Central Alborz (Iran). (in prep.)
Alavi, M., 1996, Tectonostratigraphic     synthesis and structural style of the Alborz mountain system in northern Iran:
Journal of Geodynamics, 21(1), 1–33.
Amini X. and Emami N. H.,1992. Geologic map of the Tehran ahcet: scale 1: 100.000. Geological Survey of Iran, Tchran. Iran.
Badamgarov, J., and Dorjnamjaa, D., 1999. The landscape evolution of Nemegt Uul: a late Cenozoic transpressional uplift in the Gobi
 
Altai, southern Mongolia, in: Smith, B. J., Whalley, W. B., Warke, P. A. (eds.), Uplift, Erosion and Stability: Perspectives on Longterm Landscape Development: Geological Society London, Special Pub., 201–218.
Bayasgalan, A., Jackson, J., Ritz, J. F., and Carretier, S., 1999. ‘Forebergs,’ flowers structures, and the development of large intra-continetal strike slip fault: The Gurvan Bogd fault system in Mongolia: Journal of Structural Geology, 21(10), 1285–1302.
Bull, W. B., and McFadden, L. D., 1977, Tectonic geomorphology north and south of the Garlock fault, California. in: Doehering, D. O., (ed.), Geomorphology in arid regions Proceedings at the Eighth Annual Geomorphology Symposium (pp. 115–138), State University of New York, Binghamton, N.Y.
Engalenc, M., 1968. Contribution a la Geologie,   Geomorphologie, Hydrogeologie de la region de Teheran (Iran). C.E.R.H., Montpellier, France, 365p.
Florensov, N. A., Solonenko, V. P. (eds.), 1963, The Gobi Altay earthquake: Akademiya Nauk USSR, Moskow, in Russian; English translation by Israel Program for Scientific Translations, US Department of Commerce, Washington, DC, 1965.
Owen, L.A., Cunningham, D., Windley, B. F.,
Landgraf, A., Ballato, P., Strecker, M.R., Friedrich, A., Tabatabaei, S.,
Shahpasandzadeh, M., 2009. Fault-kinematic and geomorphic observations along the North Tehran Thrust and Mosha Fasham Fault, Alborz mountains, Iran: implications for fault-system
evolution and interaction in a changing tectonic regime, Geophys. J. Int, 177,676–690
Regard, V.; Bellier, O.Thomas, J-C.; Bourles,  D.Bonnet, S.; Abbassi, M.R.; Braucher, R.; Mercier,J.; Shabanian, S. Soleymani, Sh; Feghhi, Kh., 2005. Cumulative right-lateral fault slip rate across the Zagros – Makran transfer zone and role of the Minab-Zendan fault system within the convergence accommodation between Arabia and Eurasia (SE Iran). Geophys. J. Int., 162, 177-203.
Rieben, E.H., 1955. The geology of Tehran plain. Am. J. Sci., 253, 617-639.
Ritz, J.F. et al., 2012. Paleoearthquakes of the past 30 000 years along the North Tehran Fault (Iran), J. geophys. Res., 117(B6), doi:10.1029/2012JB009147.
Vernant, Ph., Nilfroushan, F., Hatzfeld, D., Abbassi, M.R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F. and Chery, J., 2004a. Present-day crustal deformation and plate kinematics in the Middle East constrained by measurements in Iran and northern Oman. Geophys. J. Int., 157, 381-398.
Tchalenko, J.S., 1975. Seimotectonic framework of the North Tehran fault. Tectonophysics,  29, 411-420.
Yaminifard, F., Moradi, A. and Naghavi, M., 2012. Source parameters of the October 17, 2009 Rey-Tehran Earthquake, Mw 4.3. Iranian Journal of Geophysics, 6(3), 46-58.
SoltaniMoghadam, S., Sepanloo, K., Kheyri Moloumeh, M. 2018. Velocity model calculation and seismicity study of last decade on Tehran and high Alborz elevations. Iranian Journal of Geophysics, 12(2), 78-95.
Hajimirza alian, F., Hatami, M.R., Maleki, V., 2018.  Determining focal mechanism of earthquakes with magnitude 2≤ Mn≤5 in Alborz region by using the polarity of P wave first motion and S/P amplitude ratios. Iranian Journal of Geophysics, 12(3), 122-144.