Evaluation of Deterministic Wind Speed Forecasting Output of Two Ensemble Post-Processing Methods

Document Type : Research Article

Authors

1 Ph.D Student, Department of Marine and Atmospheric Science (Non-Biologic), Faculty of Marine Science and Technology, University of Hormozgan, Hormozgan, Iran

2 Assistant Professor, Department of Marine and Atmospheric Science (Non-Biologic), Faculty of Marine Science and Technology, University of Hormozgan, Hormozgan, Iran

3 Associate Professor, Institute of Mereorological Research, tehran, Iran

Abstract

In this study, deterministic forecasts of 10-meter wind speed for the next 24, 48 and 72 hours have been produced and analyzed over Iran using BMA and EMOS methods for post-processing of raw outputs of the ensemble systems. The main purpose of this article is to compare deterministic forecasts based on these two methods with each raw ensemble members and the mean of the raw ensemble members. The applied ensemble system consists of eight members with different boundary layer schemes in the Weather Research and Forecasting (WRF) model. Other physical schemes remained the same in the ensemble members. For each ensemble member, the 24, 48 and 72-hour forecasts of 10-meter wind speed have ben conducted over Iran, with a horizontal resolution of 21 km. The Global Forecast System (GFS) is used for initial and boundary conditions of forecasts starting at 1200 UTC for each case. Observational data of 31 synoptic meteorological stations located in provincial capitals have been used for model evaluation, in which model outputs are interpolated to the locations of these stations by a bilinear method. The WRF model is run from 1 March to 31 August 2017, but the results from 11 April to 31 August 2017 are considered as the spin-up period. Indeed, after careful examination of the forecast errors using different spin-up periods, the first 30 days of the simulation are considered as the spin-up for both BMA and EMOS methods. Verification is performed by different methods (accuracy: PC, TS and OR; reliability and resolution: FAR, POFD and POD; skill: CSS, HSS, PSS, GSS and Q; statistical errors: RMSE and MAE) for 10-meter wind speed thresholds less than 3 m/s and more than 5, 10 and 15 m/s for both methods for all forecast lead times. Results indicate significant improvements in accuracy scores (300%), reliability and resolution scores (220%), skill scores (340%). Statistical error scores are also reduced by 24%. Furthermore, applying verification for different climatic regions of Iran (cold, semi-arid, hot-dry, hot-humid and moderate-rainy climate) indicates that in all climatic regions, the best performance in terms of RMSE is for BMA and EMOS methods, with the average reduction of error by 21% and 23% ,respectively. Particularly, in hot and humid climates,  these two methods better improve predictions, and hence, are more promisingas they reduce the error by 44% and 46%, respectively.

Keywords

Main Subjects


آزادی، م.، محمدی، س. ع.، 1398، پیش‌بینی احتمالاتی دمای کمینه و بیشینه روزانه روی ایران با استفاده از سامانه همادی دو عضوی: مجله نیوار، 43(1)، 57-66.
آزادی، م.، واشانی، س.، حجام، س.، 1391، پیش­بینی احتمالی بارش با استفاده از پس­پردازش (Post Processing) برونداد یک سامانه همادی: مجله فیزیک زمین و فضا، 38(3)، 203-216.
فتحی، م.، آزادی، م.، کمالی، غ.، مشکاتی، ا.، 1398، واسنجی پیشبینی احتمالاتی بارش برونداد سامانه همادی به روش میانگین­گیری بایزی روی ایران: نشریه هواشناسی و علوم جوّ، 1(2)، 114-129.
محمدی، س. ع.، 1395، پیش‌بینی عددی دمای سطح زمین به‌صورت قطعی و احتمالی روی ایران در فصل‌های پاییز و زمستان: پژوهشکده توسعه تکنولوژی جهاد دانشگاهی، پایان­نامه دکترای تخصصی.
Alizadeh, Y., 2014, Multi temporal Change Detection On Urmia lake and its Catchment Area Using Remote Sensing and Geographical Information Systems: Thesis for Master of Engineering, Istanbul Technical University.
Baran, S., Hor’anyi, A., and Nemda, D., 2014, Comparison of BMA and EMOS statistical calibration methods for temperature and wind speed ensemble weather prediction: Időjárás, 118(3), 217-241, https://arxiv.org/abs/1312.3763v1.
Baran. A., Lerch, S., El Ayari, M., and Baran, S., 2020, Machine learning for total cloud cover prediction: Neural Computing and Applications, 33(2021), 2605-2620, https://link.springer.com/article/10.1007/s00521-020-05139-4.
Eckel, F., Allen, M., and Sittel, M., 2012, Estimation of ambiguity in ensemble forecasts: Weather and Forecasting, 27(1), 50-69.
ElGharamti, M., Raeder, K., and Anderson, J., 2019, Comparing adaptive prior and posterior inflation for ensemble filters using an atmospheric general circulation model: Monthly Weather Review, 147(7), 2535–2553.
Gilbert, C., J., Messner, W., Pinson, P., Trombe, P. J., Verzijlbergh, R., Dorp, P., and Jonker, H.,2019, Statistical post-processing of turbulence-resolving weather forecasts for offshore wind power forecasting: Wind Energy, https://doi.org/10.1002/we.2456.
Glahn, B., Peroutka, M., Wiedenfeld, J., Wagner, J., Zylstra, G., Schuknecht, B., and Jackson, B., 2009, MOS uncertainty estimates in an ensemble framework: Monthly Weather Review, 137(1), 246-268.
Gneiting, T., Balabdaoui, F., and Raftery, A., 2007, Probabilistic forecasts, calibration and sharpness: Royal Statistical Society, 69(2), 243-268.
Gneiting, T., Raftery, A., Westveld, A., and Goldman, T., 2005, Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation: Monthly Weather Review, 133(5), 1098-1118.
Hamill, T., and Colucci, A. S., 1998, Evaluation of Eta-RSM ensemble probabilistic precipitation forecast: Monthly Weather Review, 126(3), 711-724.
Hamill, T., and Whitaker, J. S., 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts: Monthly Weather Review, 132(6), 1434-1447.
Han, K., and Choi, J. T., 2018, Comparison of statistical post-processing methods for probabilistic wind speed forecasting: Asia-Pacific Journal of Atmospheric Sciences, 54(1), 91-101.
Jie, C., François, P., 2014, Post processing of ensemble weather forecasts using a stochastic weather generator: Monthly Weather Review, 142(3), 1106–1124.
Jochen, B., and Zied Ben, B., 2020, Stratified
 
      rank histograms for ensemble forecast verification under serial dependence: Royal Meteorological Society, 146(729), 1976-1990.
Johnson, C., and Bowler, N., 2009, On the reliability and calibration of ensemble forecasts: Monthly Weather Review, 137(5), 1717-1720.
Konstantinou, T., Savvopoulos, N., and Hatziargyriou, N., 2020, Post-processing numerical weather prediction for probabilistic wind forecasting: International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), 18-21 Aug. 2020, https://ieeexplore.ieee.org/document/9183641.
Lerch, S., and Thorarinsdottir, T., 2013, Comparison of non-homogeneous regression models for probabilistic wind speed forecasting: Tellus A: Dynamic Meteorology and Oceanography, https://doi.org/10.3402/tellusa.v65i0.21206.
Lorenz, E. N.  The essence of chaos, University   of  Washington Press, 1963.   
Marcos, R., and Gonzales, N., 2018, Characterization of the near surface wind speed distribution at global scale: ERA-Interim reanalysis and ECMWF seasonal forecasting system 4: Climate Dynamics, 52, 3307–3319, https://link.springer.com/article/10.1007/s00382-018-4338-5.
Medina, H., and Tian, D., 2019, Comparing GEFS, ECMWF, and Post-processing methods for ensemble precipitation forecasts over Brazil: Journal of Hydrometeorology, 20(4), 773–790, https://doi.org/10.1175/JHM-D-18-0125.
Mohammadi, S., A., 2016, Meta-heuristic CRPS minimization for the calibration of short-range probabilistic forecasts: Meteorology and Atmospheric Physics, 128(4), 429-440.
Raftery, A., Gneiting, T., and Balabdaoui, F., 2005: Using Bayesian model averaging to calibrate forecast ensemble: Monthly Weather Review, 133(5), 1155-1174.
Roulston, M. S., and Smith, L. A., 2003, Combining dynamical and statistical ensembles: Tellus A, 55, 16-30, https://doi.org/10.3402/tellusa.v55i1.12082.
Sloughter, J. M., Gneiting, T., and Raftery, A. E., 2010, Probabilistic wind forecasting using ensembles and Bayesian model averaging: Journal of the American Statistical Association, 105(489), 25–35.
Song, X., and Zhu, Y., 2018, Improving multi-model ensemble forecasts of tropical Cyclone intensity using Bayesian model averaging: Journal of Meteorological Research, 32, 794–803, https://link.springer.com/article/10.1007/s13351-018-7117-7.
Thorarinsdottir, L. T., and Gneiting, T., 2010, Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression: Royal Statistical Society, 173(2), 371-388.
Unger, D. A., 1985, A method to estimate the continuous ranked probability score: Ninth Conference on Probability and Statistics in Atmospheric Sciences, Virginia Beach.
Unger, D., Van Den Dool, H., and O’Lenic, E., 2009, Ensemble regression: Monthly Weather Review, 137(7), 2365-2379.
Wilks, D., 2011, Statistical Methods in the Atmospheric Sciences: Academic Press, New York.
Xu, W., and Ning, L., and Luo, Y., 2020, Wind speed forecast based on post-processing of numerical weather predictions using a gradient boosting decision tree algorithm: Atmosphere, 11(7), 738, https://doi.org/10.3390/atmos11070738.