شناسایی منطقه هیدروکربنی با استفاده از روش یادگیری ماشین بردار پشتیبان

نوع مقاله : مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانش آموخته کارشناسی ارشد ژئوفیزیک، موسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

2 استادیار گروه فیزیک زمین، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

3 استاد گروه فیزیک زمین، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

چکیده

تعیین منطقه هیدروکربنی یکی از اساسی­ترین مراحل اکتشاف است. روش­های گوناگونی برای تعیین منطقه هیدروکربنی وجود دارد که پیدا کردن مناسب­ترین روش یک مجموعه داده خاص، علاوه‌بر افزایش سرعت محاسبات، دقت پیش‌بینی­ها و تخمین­های حاصل از تحلیل را بهبود می­بخشد. ماشین بردار پشتیبان از جمله روش­های تحلیل داده است که با استفاده از تابع کرنل می­تواند ارتباط بهتری بین منطقه هیدروکربنی و پارامترهای داده­ها برقرار کند؛ بنابراین نتیجه بهتری برای تخمین و دسته­بندی داده­ها به‌دست­می‌آید. این روش به دلیل حاشیه تفکیک­کننده در دسته­بندی داده­ها در مرحله آموزش، توانایی بیشتری در تعمیم­پذیری و تفکیک داده­های واقعی نسبت به بقیه تفکیک‌کننده­ها ازجمله شبکه عصبی دارد. در این مقاله تعیین منطقه هیدروکربنی با استفاده از داده­های چاه و لرزه‌ای انجام شده است. در ابتدا با استفاده از نگاره­های چاه، گزارش تفسیری چاه منطقه هیدروکربنی در بخش­های مختلف سازند آسماری مشخص شد و با استفاده از روش ماشین بردار پشتیبان سعی شد که منطقه هیدروکربنی با استفاده از نگاره­ها به‌دست­آید. نتایج تفکیک­کننده بردار پشتیبان با گزارش تفسیری چاه مقایسه شد. نتایج دسته­بندی این روش با منطقه هیدروکربنی چاه سازگاری خوبی داشت. در مرحله بعد، تعیین منطقه هیدروکربنی با استفاده از داده­های لرزه‌ای به روش ماشین بردار پشتیبان انجام شد که در ابتدا نشانگر­های لرزه‌ای از رد لرزه‌ای در محل چاه استخراج شد. سپس با استفاده از ماتریس کوواریانس و رسم سرتاسری مربوط به نشانگر­های لرزه‌ای، نشانگر­های لرزه‌ای مناسب برای مشخص کردن منطقه هیدروکربنی تعیین شدند. در ادامه، به‌منظور اعتبارسنجی نتایج این روش از رد کناری چاه برای داده اعتبارسنجی استفاده شد. نتایج این روش با بخش­های هیدروکربنی با درصد خطای کمی همخوانی داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hydrocarbon zone identification using support vector machine learning method

نویسندگان [English]

  • Mohammadreza Ghaseminejad 1
  • Majid Bagheri 2
  • Majid Nabi Bidhendi 3
1 M.Sc, Institute of Geophysics, University of Tehran,Tehran, Iran
2 Assistant Professor Institute of Geophysics, University of Tehran,Tehran, Iran
3 Professor, Institute of Geophysics, University of Tehran,Tehran, Iran
چکیده [English]

One of the basic steps of oil exploration is to define the hydrocarbon zone. Different methods have been used so far for defining such zones. For a specific dataset, finding the most appropriate method leads to more accurate estimates and predictions of analysis besides improving the speed of calculations. Support Vector Machine (SVM), which is one of the methods for analyzing the data, uses kernel functions. It finds a better relationship between data factors and hydrocarbon zone leading to better estimates and classifications.
    In this article, hydrocarbon zone detection has been done using seismic and well data.
    The purpose of facies analysis is to obtain important petrophysical parameters of the reservoir and to identify heterogeneous boundaries below the ground. The results of the interpretation of petrophysical parameters are the input of the three-dimensional reservoir modeling process and through these parameters, the reservoir parameters are distributed in three-dimensional space. This model is widely used in various sections such as exploration and drilling of new wells, overdraft from a reservoir, determination of suitable areas for overdraft, reduction of drilling risk and risk, determination of reservoir lithology and identification of key well and its extension to other wells in the region. The most important petrophysical parameters are shale volume, porosity, permeability, reservoir fluid saturation and reservoir lithology.
    The study of seismic facies has been started since the 90's and due to its importance and application in reservoir description, it has always been considered by many researchers.
    To perform the analysis above, first, the hydrocarbon zones were spotted across the Asmari Formation using well logs and well geology reports. Next, the SVM method was used to detect each hydrocarbon zone using well logs. There was an acceptable agreement between the results of SVM method and well geology reports. Second, hydrocarbon zones detection was done using seismic data by SVM. At this stage, seismic attributes were extracted from the seismic trace in the well location. Then, covariance matrix and cross plots of seismic attributes used to identify the most effective attributes to hydrocarbon zones detection. In order to validate the results, the seismic attributes of another trace near the well location were used for hydrocarbon zone detection. SVM results matched hydrocarbon zones with low error.
 

کلیدواژه‌ها [English]

  • hydrocarbon zones detection
  • Support vector machine (SVM)
  • Well Logs
  • Seismic attributes
  • Validation
Alexis, C., and Tanwi, B., 2008, Integrated geological and geophysical analysis by hierarchical classification combining seismic stratigraphic and AVO attributes: Petroleum Geoscience, 14, 339–354.
Alpana, B., and Hans B., 2002, Determination of facies from well logs using modular neural networks: Petroleum Geoscience, 8, 217–228.
Bagheri, M., and Riahi, M. A., 2014, Seismic facies analysis from well logs based on supervised classification scheme with different machine learning techniques: Arabian Journal of Geosciences, 8(9), DOI 4004001/s48441-041-4934-4.
Bardini, S., Grana, D., and Maffioletti, F., 2010, 3D Geological and Seismic Modelling for Reservoir Characterization: 72nd EAGE Conference & Exhibition incorporating, Barcelona, Spain.
Dumay, J., and Fournier, F., 1988, Multivariate statistical analyses applied to seismic facies recognition: Geophysics, 53, 1151-1159.
Farzadi, P., 2006, Seismic facies analysis based on 3D multi-attribute volume classification, Dariyan Formation, SE Persian Gulf: Journal of Petroleum Geology, 8398, 443-411.
Fournier, F., Dequirez, P. Y., Macrides, G. C., and Rademakers, M., 2002, Quantitative lithostratigraphic interpretation of seismic data for characterization of the Unayzah Formation in central Saudi Arabia: Geophysics, 67, 1372-1381.
Hagan, D. C., 1982, The applications of principal component analysis to seismic data sets: Geoexploration, 20, 93–111.
Hossain, Z., and Mukerji, T., 2011, Statistical Rock Physics and Monte Carlo Simulation of Seismic Attributes for Greensand: 73rd EAGE Conference & Exhibition incorporating, Vienna, Austria.
Linari, V., Santiago, M., Pastore, C., Azbel, K., and Poupon, M., 2003, Seismic facies analysis based on 3D multi-attribute volume classification, La Palma field, Maracaibo, Venezuela: The Leading Edge, 22, 32-36.
Marroquin, I. D., Brault, J. J., and Hart, B. S., 2009, A visual data-mining methodology for seismic facies analysis: Geophysics, 74, 13-23.
Mathieu, P. G., Rice, G. W., 1999, Multivariate analysis used in the detection of stratigraphic anomalies from seismic data: Geophysics, 31, 401-444.
Matlock, R. J., McGowen, R. S., and Asimakopoulos, G., 1985, Can seismic stratigraphy problems be solved using automated pattern analysis and recognition: 55th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, session S17, 7.
Paparozzi E., Grana, D., Mancini, S., and Tarchiani, C., 2011, Seismic driven probabilistic classification of reservoir facies and static reservoir modeling, 13rd EAGE Conference & Exhibition Incorporating SPE EUROPEC Vienna, Austria, May, 80440.
Saggaf, M. M., Toksoz, M. N., and Marhoon M. I., 2003, Seismic facies classification and identification by competitive neural networks: Geophysics, 92, 4321-4333, 8003.
Simaan, M. A., 1991, A knowledge-based computer system for segmentation of seismic sections based on texture: 61st Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 289-292.
Taner, M. T., 2001, Seismic attributes: Recorder, 26, 48–56.
Vapnik, V., 1995, The nature of statistical learning theory, Springer- Verlag, New York, 314 pp.
Vapnik, V., 1998, Statistical Learning Theory,Wiley, New York, NY, USA.
West, B., May, S., Eastwood, J. E., and Rossen, C., 2002, Interactive seismic facies classification using textural and neural networks: The Leading Edge, 21, 1042-1049