شناسایی گستره شوری در سفره آب زیرزمینی با استفاده از روش متمرکز بر پیش‌بینی (PFA) و پی‎جویی ژئوالکتریکی

نوع مقاله : مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 استادیار، دانشکده علوم زمین، دانشگاه تحصیلات تکمیلی علوم پایه زنجان، زنجان، ایران

2 دانشجوی کارشناسی ارشد ژئوفیزیک، دانشکده علوم زمین، دانشگاه تحصیلات تکمیلی علوم پایه زنجان، زنجان، ایران

چکیده

در دهه‌های اخیر کاربرد هیدروژئوفیزیک در مطالعه آبخوان­ها افزایش چشمگیری یافته است، اما هنوز مقادیر کم آلودگی (نظیر شوری) حاصل از تبدیل مدل­های ژئوفیزیکی به مدل­های هیدروژئولوژیک، که با روابط پتروفیزیکی انجام می­شود، دقت کافی را ندارد. یکی از دلایل اصلی این موضوع، نقاط ضعف مرتبط با منظم‌سازی موجود در مدل­سازی وارون ژئوالکتریک است. این تبدیل­ها در شرایط پیچیده مانند محیط­های ناهمگن عدم قطعیت زیادی دارند. در این مطالعه سعی شده است با روش متمرکز بر پیش­بینی PFA و بدون نیاز به مدل­سازی وارون کلاسیک ژئوالکتریک، تکامل زمانی و گستره مکانی ابر آلودگی حاصل از تزریق شوری در یک آبخوان ناهمگن مصنوعی با استفاده از مقادیر مقاومت الکتریکی ظاهری شناسایی و مدل شود. ابتدا 500 سری هدایت هیدرولیکی ناهمگن مختلف برای یک آبخوان مصنوعی متناسب با خاک ماسه لومی با روش شبیه­سازی گاوسی متوالی مدل شد. در مرحله بعد، با استفاده از مدل­سازی جریان و انتقال آلودگی و سپس مدل­سازی پیشروِ ژئوالکتریکی، 500 سری مقادیر مقاومت ویژه ظاهری به‌طور جداگانه متناسب با ۵۰۰ سری هدایت هیدرولیکی محاسبه شد. در ادامه، با تحلیل همبستگی کانونی بین داده­های مقاومت ویژه ظاهری و داده­های غلظت آلودگی (داده آموزش) یک رابطه خطی در فضای کاهش ابعاد یافته برقرار شد. به دلیل دقت زیاد رابطه خطی به‌دست­آمده، توزیع پسین داده­های ابر آلودگی (داده پیش­بینی) با استفاده از رگرسیون روند گاوسی به‌طور مستقیم نمونه­گیری شد. نتایج از همخوانی خوبی با داده­های غلظت آلودگی اولیه برخوردار هستند. این مطالعه نشان داد روش PFA علاوه­بر گستره مکانی و تکامل زمانی ابر آلودگی، توانسته است حتی مقادیر بیشینه غلظت آلودگی را نیز با دقت خوبی مدل­سازی کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Contaminant plume modeling in aquifers through prediction-focused approach and geoelectrical data

نویسندگان [English]

  • Abolfazl Rezaei 1
  • Freshteh Soleimani 2
1 Assistant professor, Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
2 MS student, Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
چکیده [English]

Although hydrogeophysics application in studying the groundwater systems has been significantly increased over the two recent decades, the solute concentration quantities obtained from geophysical modeling are of high uncertainty. This is mostly attributed to (1) the regularization procedure in geoelectrical inverse models, particularly in complex geological settings such as heterogeneous aquifers, and (2) the use of petrophysical relationships.
The primary goal of this study is to model the spatio-temporal evolution of the injected salt contaminant in a heterogeneous loamy sand aquifer through the prediction-focused approach (PFA) and resistivity data, circumventing the need for classical geoelectric inversion. The primary advantage of the PFA method is that it does not need any regularization step used in the deterministic geoelectric inversion. This methodology only needs to generate the prior dataset without suffering from any spatial bias, spatially and temporally varying resolution or uncertainty in the post inversion petrophysical transformation.
In this research, a synthetic heterogeneous two-dimensional aquifer with 30m´30m is generated through a sequential Gaussian simulation. Then, 500 heterogeneous hydraulic conductivity (K) fields with mean of logK = -4.6 are generated. Accordingly, 500 models of flow and solute transport are carried out for each of six time steps of 0.05, 0.1, 0.2, 0.5, 1, and 5 years. Subsequently, 500 corresponding apparent resistivity datasets are generated through forward geoelectrical modeling (dipole-dipole array) for each of six steps using a MATLAB code. After preparing the large 3D matrices of resistivity and concentration variables as inputs for the PFA, canonical correlation analysis is used to explore the relationship between the apparent resistivity (data) and the solute concentrations (forecast variables) in their reduced dimension space. We selected only 12 and 8 first components for the resistivity and saline concentration variables which they both explain more than 99.5 percent of the variance. The principal component analysis and canonical correlation analysis are used on the reduced datasets to maximize the correlation between the components of the resistivity and solute concentration data. Since a linear relationship is established between the data and forecast, the posterior distribution of the solute concentration is directly sampled using a Gaussian process regression. Finally, the reduced dimension space is back-transformed to the original space. Results demonstrate that the modeled contaminant plumes, in addition to their spatio-temporal distributions, are highly consistent with the maximum and minimum concentration values of the reference images. This signifies the robustness of the PFA for hydrogeophyscical investigation.

کلیدواژه‌ها [English]

  • Geoelectrical surveys
  • Prediction-focused approach
  • heterogeneous aquifer
  • Contaminant
Arato, A., Boaga, J., Comina, C., De Seta, M., Di Sipio, E., Galgaro, A., Giordano, N., and Mandrone, G., 2015, Geophysical monitoring for shallow geothermal applications—Two Italian case histories: First Break, 33(8), 75–79.
Archi, G. E., 1942. The electrical resitivity log as an aid in determining some reservoir charaterstics. Trans A.I.M.E., 146, 54-62.
Bechtold, M., Vanderborght, J., Weihermüller, L., Herbst, M., Günther, T., Ippisch, O., Kasteel, R., and Vereecken, H., 2012, Upward transport in a three-dimensional heterogeneous laboratory soil under evaporation conditions: Vadose Zone Journal, 11.
Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., and Slater, L. D., 2015, The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales: Water Resources Research, 51, 3837–3866.
Day-Lewis, F. D., Singha, K., and Binley, A., 2005, Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations: Journal of Geophysical Research, 110, B08206.
 
Deutsch, C. V., and Journel, A. G., 1992, GSLIB: Geostatistical Software Library and User's Guide: Oxford University Press, New York.
Hermans, T., Nguyen, F., Klepikova, M., Dassargues, A., and Caers, J., 2018, Uncertainty quantification of medium-term heat storage from short-term geophysical experiments using Bayesian evidential learning: Water Resources Research, 54(4), 2931-2948.
Hermans, T., Nguyen, F., Robert, T., and Revil, A., 2014, Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems: Energies, 7(8), 5083–5118.
Hermans, T., Oware, E., and Caers, J., 2016, Direct prediction of spatially and temporally varying physical properties from time-lapse electrical resistance data: Water Resources Research, 52(9), 7262-7283.
Koestel, J., Kemna, A., Javaux, M., Binley, A., and Vereecken, H., 2008, Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR: Water Resources Research, 44, W12411.
Laloy, E., Linde, N., and Vrugt, J. A., 2012, Mass conservative three-dimensional water tracer distribution from Markov chain Monte Carlo inversion of time-lapse ground-penetrating radar data: Water Resources Research, 48, W07510.
Linde, N., and Doetsch, J., 2016, Joint inversion in hydrogeophysics and near-surface geophysics, in Moorkamp, M., Lelievre, P. G., Linde, N., and Khan, A., eds., Integrated Imaging of the Earth: Theory and Applications: John Wiley & Sons, Inc., 117–135.
Masy, T., Caterina, D., Tromme, O., Lavigne, B., Thonart, P., Hiligsmann, S., and Nguyen, F., 2016, Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale: Journal of Contaminant Hydrology, 184, 1–13.
Moysey, S., Singha, K., and Knight, R., 2005, A framework for inferring field-scale rock physics relationships through numerical simulation: Geophysical Research Letters, 32, L08304.
Muller, K., Vanderborght, J., Englert, A., Kemna, A., Huisman, J. A., Rings, J., and Vereecken, H., 2010, Imaging and characterization of solute transport during two tracer tests in a shallow aquifer using electrical resistivity tomography and multilevel groundwater samplers: Water Resources Research, 46, W03502.
Oware, E. K., Moysey, S. M. J., and Khan, T., 2013, Physically based regularization of hydrogeophysical inverse problems for improved imaging of process-driven systems: Water Resources Research, 49(10), 6238-6247.
Pidlisecky, A., and Knight, R., 2008, FW2_5D: A MATLAB 2.5-D electrical resistivity modeling code: Computers & Geosciences, 34(12), 1645-1654.
Rezaei, A., Mousavi, Z., Khorrami, F., and Nankali, H., 2020, Inelastic and elastic storage properties and daily hydraulic head estimates from continuous global positioning system (GPS) measurements in northern Iran: Hydrogeology Journal, 28(2), 657-672.
Satija, A., and Caers, J., 2015, Direct forecasting of subsurface flow response from non-linear dynamic data by linear least-squares in canonical functional principal component space: Advances in Water Resources, 77, 69–81.
Singha, K., Day-Lewis, F. D., Johnson, T., and Slater, L., 2015, Advances in interpretation of subsurface processes with time-lapse electrical imaging: Hydrological Processes, 29(6), 1549–1576.
Singha, K., and Moysey, S., 2006, Accounting for spatially variable resolution in electrical resistivity tomography through field-scale rock physics relations: Geophysics, 71(4), A25–A28.
Sulzbacher, H., Wiederhold, H., Siemon, B., Grinat, M., Igel, J., Burschil, T., Günther, T., and Hinsby, K., 2012, Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods: Hydrology and Earth System Sciences, 16, 3621–3643.
Wallin, E. L., Johnson, T. C., Greenwood, W. J., and Zachara, J. M., 2013, Imaging high stage river-water intrusion into a contaminated aquifer along a major river corridor using 2-D time-lapse surface electrical resistivity tomography: Water Resources Research, 49, 1693–1708.
Whitaker, S., 1986, Flow in porous media I: a theoretical derivation of Darcy's law: Transport in Porous Media, 1, 3–25.