تحلیل‌ خطر جابه‌جایی ناشی از گسیختگی‌های سطحی گسل شمال تبریز به روش احتمالاتی

نوع مقاله : مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران، ایران

2 دانشیار، گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران، ایران

3 دانش آموخته کارشناسی ارشد، گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران، ایران

چکیده

روش تحلیل خطر احتمالی جابه‌جایی ناشی از گسیختگی سطحی، یکی از روش­های نوین در برآورد میزان جابه‌جایی محتمل در منطقه‌ای است که خطر گسیختگی گسل مسبب وجود دارد. در این مطالعه با استفاده از رویکرد احتمالاتی و روش زمین­لرزه، به بررسی میزان جابه‌جایی سطحی گسل شمال تبریز پرداخته شده و جابه‌جایی محتمل در دوره بازگشت­های مختلف در قالب نقشه­های همبندی برآورد شده است. با توجه به گسیختگی­های سطحی ناشی از زمین‌لرزه­های 1721 و 1780 میلادی گسل شمال تبریز که به‌ترتیب با 50 و 60 کیلومتر گسیختگی سطحی همراه بودند، جهت برآورد احتمال جابه‌جایی ناشی از گسیختگی سطحی این گسل با روش زمین­لرزه، قطعه‌ای به طول 50 تا 60 کیلومتر از گسل برای چشمه احتمالی گسیختگی سطحی انتخاب شد. مطابق مطالعات دیرینه­شناسی در این منطقه، جابه‌جایی احتمالاتی به‌ترتیب بین صفر تا 5/4 و صفر تا 1/7 متر انتخاب و بر اساس مطالعات دیرینه­شناسی و کاتالوگ زمین‌لرزه­های تاریخی، دوره بازگشت و بزرگای احتمالی ناشی از فعالیت گسل شمال تبریز، 645 سال و 7/7 Mw~درنظر­گرفته ‌شد. جابه‌جایی احتمالاتی برای نرخ‌ فزونی 5 درصد در 50، 475 و 2475 سال برای جابه‌جایی­های اصلی محتمل (روی گسل) گسل شمال تبریز برآورد شده است. همچنین با اِعمال رابطه کاهندگی پیترسن، جابه‌جایی احتمالاتی بیشینه گسل شمال تبریز برای جابه‌جایی­های 5/4 و 1/7 متر در نرخ فزونی 5 درصد در 50 سال، 186 سانتی‌متر؛ در 475 سال، 469 سانتی‌متر و در 2475 سال، 655 سانتی‌متر تخمین زده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Probabilistic fault displacement hazard analysis for North Tabriz fault

نویسندگان [English]

  • habib rahimi 1
  • mohamadreza hosseine 2
  • ali songhori 3
1 M.Sc. Graduate, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran
2 Associate Professor, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran
3 M.Sc. Graduate, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran
چکیده [English]

The probabilistic fault displacement hazard analysis method is one of the new methods in estimating the amount of possible displacement in the area at risk of causal fault rupture. In this study, using the probabilistic approach and earthquake method, the surface displacement of the North Tabriz fault has been investigated, and the probable displacement in different return periods has been estimated as contour maps. Assuming a strike-slip mechanism of the North Tabriz fault and earthquake method, to estimate the probability of displacement due to surface rupture, according to the surface ruptures caused by earthquakes of 1721 and 1780 North Tabriz fault, which were associated with 50 and 60 km of surface rupture respectively, a 50-60 km long section of North Tabriz fault was selected as the source of possible surface rupture. Due to a lack of data on large-scale earthquakes in northwestern Iran, the trace of North Tabriz fault is assumed to be a simple trace. This leads to a great epistemic uncertainty in the obtained possible displacement values
    Owing to the passage of the North Tabriz fault through the residential area of Tabriz and destructive historical earthquakes, it is essential to estimate the possible future displacements of this fault. According to paleoseismic studies, probabilistic displacements were considered between zero to 4.5 and zero to 7.1 m, respectively. Using the paleoseismic studies and the catalog of historical earthquakes, the return period and the probable magnitude of the North Tabriz fault are 645 years and Mw~7.7. In the case of exceedance rate of 5% in 475 and 2475 years, the maximum displacement is estimated up to a distance of 70 and 100 meters from the site. The attenuation relationships used in this study were derived from the fitting of seismic data occurred in different parts of the world. To reduce the uncertainty in this hazard analysis and the values of possible displacement, the data of surface rupture of strike-slip earthquakes in Iran can be used to fit and obtain local attenuation relationships. In this research, considering the attenuation relationship of Petersen, the estimated maximum probability displacement of the North Tabriz fault at an exceedance rate of 5% in 50 years, for 4.5 and 7.1m displacements, is 186 cm. Moreover, the estimated maximum probability displacements in 475 and 2475 years are 469 cm and 655 cm, respectively.

کلیدواژه‌ها [English]

  • Hazard analysis
  • Surface rupture
  • probabilistic displacement hazard analysis
  • North Tabriz Fault
Baize, S., Nurminen, F., Dawson, T., Takao, M., Azuma, T., Boncio, P., and Marti, E., 2019, A worldwide and unified database of surface ruptures (SURE) for fault displacement hazard analyses: Seismological Research Letters, 91(1), 499-520, https://doi.org/10.1785/0220190144.
Barka, A., 1999, The 17 August 1999 Izmit Earthquake: Science, 285(5435), 1858–1859, doi:10.1126/science.285.5435.1858.
Berberian, M., 1997, Seismic sources of the transcaucasian historical earthquakes, in Giardini, D., and Balassanian, S., eds., Historical and Prehistorical Earthquakes in the Caucasus: Kluwer Academic Press, the Netherlands, 28, 233–311, https://doi.org/10.1007/978-94-011-5464-2_13.
Berberian, M., and Arshadi, S., 1976, On the evidence of the youngest activity of the North Tabriz Fault and the seismicity of Tabriz city, Contribution to the Seismotectonic of Iran (Part II): Geological Survey of Iran, Report No. 39, 397–418.Berberian, M., and Yeats, R. S., 1999, Patterns of historical earthquake rupture in the Iranian Plateau: Bulletin of the Seismological Society of America, 89(1), 120-139.
Biasi, G. P., and Weldon, R. J., 2006, Estimating surface rupture length and magnitude of paleoearthquakes from point measurements of rupture displacement: Bulletin of the Seismological Society of America, 96(5), 1612–1623.
Bouchon, M., Bouin, M. P., Karabulut, H., Toksöz, M. N., Dietrich, M., and Rosakis, A. J., 2001, How fast is rupture during an earthquake? New insights from the 1999 Turkey earthquakes: Geophysical Research Letters, 28(14), 2723–2726.
Chen, R., and Petersen, M. D., 2019, Improved implementation of rupture location uncertainty in fault displacement hazard assessment: Bulletin of the Seismological Society of America, 109(5), 2132–2137, https://doi.org/10.1785/0120180305.
 
Comfort, L., 1995, Self-Organization in Disaster Response: The Great Hanshin Earthquake of January 17, 1995: US University of Colorado, Natural Hazards Center, 12.
Cornell, C. A., 1968, Engineering seismic risk analysis: Bulletin of the Seismological Society of America, 58(5), 1583–1606.
Hemphill-Haley, M. A., and Weldon II, R. J., 1999, Estimating prehistoric earthquake magnitude from point measurements of surface rupture: Bulletin of the Seismological Society of America, 89(5), 1264–1279.
Hessami, K., Pantosti, D., Tabassi, H., Shabanian, E., Abbassi, M. R., Feghhi, K., and Solaymani, S., 2003, Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: Preliminary results: Annals of Geophysics, 46(5), 903–916, https://doi.org/10.4401/ag-3461.
Jennings, P. C., 1971, Engineering features of the San Fernando earthquake of February 9, 1971: Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, California, https://resolver.caltech.edu/CaltechEERL, Report No. EERL-76/18.
Katona, T. J., 2020, Safety of nuclear power plants with respect to the fault displacement hazard: Applied Sciences, 10(10), 3624.
Koketsu, K., Yoshida, Sh., and Higashihara, H., 1998, A fault model of the 1995 Kobe earthquake derived from the GPS data on the Akashi Kaikyo Bridge and other datasets: Earth, Planets, and Space, 50(10), 803-811.
Lee, J. C., Chu, H. T., Angelier, J., Chan, Y. C., Hu, J. C., Lu, C. Y., and Rau, R. J., 2002, Geometry and structure of northern surface ruptures of the 1999 Mw=7.6 Chi-Chi Taiwan earthquake: influence from inherited fold belt structures: Journal of Structural Geology, 24(1), 173–192, doi:10.1016/S0191-8141(01)00056-6.
Masson, F., Djamour, Y., Van Gorp, S., Chéry, J., Tatar, M., Tavakoli, F., and Vernant, P., 2006, Extension in NW Iran driven by the motion of the South Caspian Basin: Earth and Planetary Science Letters, 252(1–2), 180–188, https://doi.org/10.1016/j.epsl.2006.09.038.
Mousavi-Bafrouei, S. H., Mirzaei, N., and Shabani, E., 2014, A declustered earthquake catalog for Iranian plateau: Annals of Geophysics, 57(6), https://doi.org/10.4401/ag-6395.
Paul, C., Rizzo Associates, Inc., 2013, Probabilistic Fault Displacement Hazard Analysis Krško East and West Sites, Proposed Krško 2 Nuclear Power Plant, Krško, Slovenia, Revision 1, Technical Report, Project No. 11-4546, 13 May 2013, http://www.ursjv.gov.si/fileadmin/ujv.gov.si.
Petersen, M. D., Dawson, T. E., Chen, R., Cao, T., Wills, C. J., Schwartz, D. P., and Frankel, A. D., 2011, Fault displacement hazard for strike-slip faults: Bulletin of the Seismological Society of America, 101(2), 805–825, https://doi.org/10.1785/0120100035.
Petersen, M. D., and Wesnousky, S. G., 1994, Fault slip rates and earthquake histories for active faults in southern California: Bulletin of the Seismological Society of America, 84(5), 1608–1649.
Ram, T. D., and Wang, G., 2013, Probabilistic seismic hazard analysis in Nepal: Earthquake Engineering and Engineering Vibration, 12(4), 577–586, https://doi.org/10.1007/s11803-013-0191-z.
Stepp, J. C., Wong, I., Whitney, J., Quittmeyer, R., Abrahamson, N., Toro, G., and Sullivan, T., 2001, Probabilistic seismic hazard analyses for ground motions and fault displacement at Yucca Mountain, Nevada: Earthquake Spectra, 17(1), 113–151, https://doi.org/10.1193/1.1586169.
Toksöz, M. N., Arpat, E., and Şaroğlu, F. U. A. T., 1977, the East Anatolian earthquake of 24 November 1976: Nature, 270(5636), 423-425.
Wells, D. L., and Coppersmith, K. J., 1994, New Empirical Relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement: Bulletin of the Seismological Society of America, 84(4), 974–1002.
Wesnousky, S. G., 2008, Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture: Bulletin of the Seismological Society of America, 98(4), 1609–1632, https://doi.org/10.1785/0120070111.
Young, C. J., Lay, T., and Lynnes, C. S., 1989, Rupture of the February 4, 1976, Guatemalan earthquake: Bulletin of the Seismological Society of America, 79(3), 670-689.
Youngs, R. R., Arabasz, W. J., Anderson, R. E., et al., 2003, A methodology for probabilistic fault displacement hazard analysis (PFDHA): Earthquake Spectra, 19(1), 191–219, https://doi.org/10.1193/1.1542891.