A Seismic investigation of the upper crustal structure of the Iranian plateau

نوع مقاله : مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 PhD Student of Geophysics, Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

2 Professor of Geophysics, Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Cambridge, UK

3 Associate Professor of Geophysics, Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

چکیده

We obtained a three-dimensional (3D) shear wave velocity model of the upper crust of the Iranian Plateau, based on the inversion of fundamental mode Rayleigh wave group velocity. The surface wave group velocity measurements for the period range 5-25 s were extracted from two seismic data sets: ambient noise cross-correlations and regional earthquakes. The low shear wave velocity (Vs) anomalies of the upper crust correspond to regions of thick sediments. The surrounding basins of the Plateau, the South Caspian Basin (SCB) in the north and the Zagros Fold-Thrust Belt (ZFTB) and the Makran accretionary wedge in the south form the thickest sedimentary covers of the region exceeding 20 km. The thickest parts of inland basins such as the Jazmurian depression and the Dasht-e Kavir are ~10 km. The Vs structure of southern Zagros is almost homogeneous at all levels of the crust, but the low velocity anomaly beneath the southern Lorestan Arc separates the central Zagros from the northernmost Zagros. The volcanic belt of the Makran Subduction Zone forms another large/deep low velocity zone, where the observed low Vs possibly results from magma migration and heat transfer from the mantle wedge of the subduction zone. High velocity regions in the upper crust are observed in the Sanandaj-Sirjan Zone (SSZ), the Urmia-Dokhtar Magmatic Assemblage (UDMA), and in the south of the Lut Block.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Seismic investigation of the upper crustal structure of the Iranian plateau

نویسندگان [English]

  • Mohsen Ahmadzadeh Irandoust 1
  • Keith Priestley 2
  • Farhad Sobouti 3
1 PhD Student of Geophysics, Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
2 Professor of Geophysics, Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Cambridge, UK
3 Associate Professor of Geophysics, Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
چکیده [English]

We obtained a three-dimensional (3D) shear wave velocity model of the upper crust of the Iranian Plateau, based on the inversion of fundamental mode Rayleigh wave group velocity. The surface wave group velocity measurements for the period range 5-25 s were extracted from two seismic data sets: ambient noise cross-correlations and regional earthquakes. The low shear wave velocity (Vs) anomalies of the upper crust correspond to regions of thick sediments. The surrounding basins of the Plateau, the South Caspian Basin (SCB) in the north and the Zagros Fold-Thrust Belt (ZFTB) and the Makran accretionary wedge in the south form the thickest sedimentary covers of the region exceeding 20 km. The thickest parts of inland basins such as the Jazmurian depression and the Dasht-e Kavir are ~10 km. The Vs structure of southern Zagros is almost homogeneous at all levels of the crust, but the low velocity anomaly beneath the southern Lorestan Arc separates the central Zagros from the northernmost Zagros. The volcanic belt of the Makran Subduction Zone forms another large/deep low velocity zone, where the observed low Vs possibly results from magma migration and heat transfer from the mantle wedge of the subduction zone. High velocity regions in the upper crust are observed in the Sanandaj-Sirjan Zone (SSZ), the Urmia-Dokhtar Magmatic Assemblage (UDMA), and in the south of the Lut Block.
 

کلیدواژه‌ها [English]

  • Iranian Plateau
  • upper crustal structure
  • Sedimentary basin
  • Rayleigh wave
  • Shear wave velocity
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie´, P., Meyer, B., and Wortel, R., 2011, Zagros orogeny: a subduction-dominated process: Geological Magazine, 148(5-6), 692–725.
Alavi, M., 2007, Structures of the Zagros fold-thrust belt in Iran: American Journal of Science, 307(9), 1064–1095.
Bensen, G., Ritzwoller, M., Barmin, M., Levshin, A., Lin, F., Moschetti, M., Shapiro, N., and Yang, Y., 2007, Processing seismic ambient noise data to obtain reliable broadband surface wave dispersion measurements: Geophys. J. I., 169(3), 1239–1260.
Debayle, E., and Sambridge, M., 2004, Inversion of massive surface wave data sets: Model construction and resolution assessment: J.  Geophys. Rese., Solid Earth, 109(B2), 1978–2012.
François, T., Agard, P., Bernet, M., Meyer, B., Chung, S. L., Zarrinkoub, M. H., et al., 2014, Cenozoic exhumation of the internal Zagros: First constraints from low-temperature thermochronology and implications for the build-up of the Iranian Plateau: Lithos, 206–207(1), 100–112.
Gilligan, A., and Priestley, K., 2018, Lateral variations in the crustal structure of the Indo–Eurasian collision zone: Geophys. J. I., 214(2), 975–989.
Haberland, C., Mokhtari, M., Babaei, H. A., Ryberg, T., Masoodi, M., Partabian, A., and Lauterjung, J., 2020, Anatomy of a crustal-scale accretionary complex: Insights from deep seismic sounding of the onshore western Makran subduction zone, Iran: Geology, 49(1), 3–7.
Hatzfeld, D., and Molnar, P., 2010, Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications: Review of Geophysics, 48, RG2005, doi:10.1029/2009RG000304.
Herrmann, R. B., 2013, Computer programs in seismology: An evolving tool for instruction and research: Seismo. Res. Lett., 84(6), 1081–1088.
Hessami, K., Pantosti, D., Tabassi, H., Shabanian, E., Abbassi, M. R., Feghhi, K., and Solaymani, S., 2003, Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results: Annals of Geophysics, 46(5).
Jackson, J., Priestley, K., Allen, M., and Berberian, M., 2002, Active tectonics of the south Caspian basin: Geophys. J. I., 148(2), 214–245.
Karasözen, E., Nissen, E., Bergman, E. A., and Ghods, A., 2019, Seismotectonics of the Zagros (Iran) from orogen-wide, calibrated earthquake relocations: J. Geophys. Res., Solid Earth, 124.
Kaviani, A., Paul, A., Moradi, A., Martin Mai, P., Pilia, S., Boschi, L., Rümpker, G., Lu, Y., Tang, Z., and Sandvol, E., 2020, Crustal and uppermost mantle shear wave velocity structure beneath the Middle East from surface wave tomography: Geophys. J. I., 221(2), 1349–1365.
Kennett, B. L., Engdahl, E., and Buland, R., 1995, Constraints on seismic velocities in the Earth from traveltimes: Geophys. J. I., 122(1), 108–124.
Khorrami, F., Vernant, P., Masson, F., Nilfouroushan, F., Mousavi, Z., Nankali, H., Saadat, S. A., Walpersdorf, A., Hosseini, S., Tavakoli, P., et al., 2019, An up-to-date crustal deformation map of Iran using integrated campaign-mode and permanent GPS velocities: Geophys. J. I., 217(2), 832–843.
Kopp, C., Fruehn, J., Flueh, E. R., Reichert, C., Kukowski, N., Bialas, J., and Klaeschen, D., 2000, Structure of the Makran subduction zone from wide-angle and reflection seismic data: Tectonophysics, 329(1–4), 171–191.
Laske, G., Masters, G., Ma, Z., and Pasyanos, M., 2013, Update on CRUST1.0 - A 1-degree global model of Earth's crust: Geophysical Research Abstracts, 15, Abstract EGU2013-2658.
Maggi, A., and Priestley, K., 2005, Surface waveform tomography of the Turkish–Iranian plateau: Geophys. J. I., 160(3), 1068–1080.
Maheri-Peyrov, M., Ghods, A., Donner, S., Akbarzadeh-Aghdam, M., Sobouti, F., Motaghi, K., Hassanzadeh, M., Mortezanejad, G., Talebian, M., and Chen, L., 2020, Upper crustal structure of NW Iran revealed by regional 3-D Pg velocity tomography: Geophysical Journal International, 222(2), 1093–1108.
Mangino, S., and Priestley, K., 1998, The crustal structure of the southern Caspian region: Geophys. J. I., 133, 630–648.
Montagner, J., 1986, Regional three-dimensional structures using long-period surface waves: Annals of Geophysics, 4(B3), 283–294.
Morley, C. K., Kongwung, B., Julapour, A. A., Abdolghafourian, M., Hajian, M., Waples, D., et al., 2009, Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in the Qom-Saveh area: Geosphere, 5(4), 325–362.
Motaghi, K., Shabanian, E., and Nozad-Khalil, T., 2020, Deep structure of the western coast of the Makran subduction zone, SE Iran: Tectonophysics, 776, 228314.
Mousavi, N., and Ebbing, J., 2018, Basement characterization and crustal structure beneath the Arabia–Eurasia collision (Iran): A combined gravity and magnetic study: Tectonophysics, 731–732, 155-171.
Mouthereau, F., 2011, Timing of uplift in the Zagros belt/Iranian Plateau and accommodation of late Cenozoic Arabia–Eurasia convergence: Geological Magazine, 148(5–6), 726–738.
Movaghari, R., Javan Doloei, G., Nowrozi, M., and Sadidkhouy, A., 2014, Velocity structure of south-east of Iran based on ambient noise analysis: Journal of the Earth and Space Physics, 40(2), 17-30, doi: 10.22059/JESPHYS.2014.50627.
Movaghari, R., and Javan Doloei, G., 2020, 3-D crustal structure of the Iran plateau using phase velocity ambient noise tomography: Geophys. J. I., 220(3), 1555–1568.
Movaghari, R., Javan Doloei, G., Yang, Y., Tatar, M., and Sadidkhouy, A., 2021, Crustal radial anisotropy of the Iran Plateau inferred from ambient noise tomography: J. Geophys. Res., Solid Earth, 126, doi.org/10.1029/2020JB020236.
Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M., and Pequegnat, C., 2010, Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran): Geological Society, London, Special Publications, 330(1), 5–18.
Paul, A., Kaviani, A., Hatzfeld, D., Vergne, J., and Mokhtari, M., 2006, Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran): Geophys. J. I., 166(1), 227–237.
Penney, C., Tavakoli, F., Saadat, A., Nankali, H. R., Sedighi, M., Khorrami, F., Sobouti, F., Rafi, Z., Copley, A., Jackson, J., and Priestley, K., 2017, Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone: Geophys. J. I., 209(3), 1800–1830.
Priestley, K., Baker, C., and Jackson, J., 1994, Implications of earthquake focal mechanism data for the active tectonics of the South Caspian Basin and surrounding regions: Geophys. J. I., 118(1), 111–141.
Priestley, K., McKenzie, D., Barron, J., Tatar, M., and Debayle, E., 2012, The Zagros core: Deformation of the continental lithospheric mantle: Geochemistry, Geophysics, Geosystems, 13, Q11014.
Rahimi, H., Hamzehloo, H., Vaccari, F., and Panza, G. F., 2014, Shear-Wave velocity tomography of the lithosphere-asthenosphere system beneath the Iranian Plateau: Bull. Seism. Soc. Am., 104(6), 2782-2798.
Shad Manaman, N., Shomali, H., and Koyi, H., 2011, New constraints on upper-mantle S-velocity structure and crustal thickness of the Iranian plateau using partitioned waveform inversion: Geophys. J. I.,184(1), 247–267.
Tatar, M., Hatzfeld, D., Martinod, J., Walpersdorf, A., Ghafori-Ashtiany, M., and Chery, J., 2002, The present-day deformation of the central Zagros from GPS measurements: Geophys. Res. Lett., 29(19), 33-1-33-4.
Teknik, V., and Ghods, A., 2017, Depth of magnetic basement in Iran based on fractal spectral analysis of aeromagnetic data: Geophys. J. I., 209, 1878–1891.
Vernant, P., Nilforoushan, F., Chery, J., Bayer, R., Djamour, Y., Masson, F., Nankali, H., Ritz, J.-F., Sedighi, M., and Tavakoli, F., 2004a, Deciphering oblique shortening of central Alborz in Iran using geodetic data: Earth and Planetary Science Letters, 223(1-2), 177–185.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., et al., 2004b, Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman: Geophys. J. I., 157(1), 381–398.