برآورد نرخ وقوع زمین‌لرزه بر اساس تغییر شکل پوسته ایران

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشجوی دکتری، پژوهشگاه زلزله شناسی و مهندسی زلزله، تهران، ایران

2 استاد، پژوهشگاه زلزله شناسی و مهندسی زلزله، تهران، ایران

3 Postdoctoral researcher, ETH, Zurich, Switzerland

چکیده

فلات ایران یکی از مناطق لرزه‌خیز در جهان است که در بیشتر نواحی آن، دوره بازگشت زمین‌لرزه­های بزرگ بیش از 1000 تا 2000 سال است. اغلب، برآورد نرخ وقوع زمین‌لرزه با استفاده از آمار زمین‌لرزه­های ثبت­شده در کاتالوگ­‌های لرزه‌ای صورت می­پذیرد؛ بنابراین هرچه این کاتالوگ­ها به واقعیت نزدیک­تر باشند، برآورد نرخ وقوع نیز واقع‌بینانه­تر است. عواملی چون کامل نبودن کاتالوگ­ها، دوره بازگشت بلند­‌مدت زمین‌لرزه­های بزرگ و ثبت دستگاهی کوتاه­مدت ناکافی (در حدود صد سال) باعث برآورد نه‌چندان مطمئن نرخ وقوع‌ زمین‌لرزه­ها می­شود. به­منظور کاهش عدم‌ قطعیت­های موجود در برآورد نرخ وقوع زمین‌لرزه­ها و افزایش اعتماد به نتایج، امروزه از مدل­های نوین توسعه­یافته استفاده می­شود که ورودی آنها ترکیب داده­هایی مانند اطلاعات لرزه­خیزی، زمین­شناسی و ژئودتیکی است. این مدل­های نوین می­توانند باعث افزایش دانش و پاسخ به مسائل مرتبط با توزیع مکانی- زمانی زمین‌لرزه­ها و کاهش عدم قطعیت نتایج شوند؛ ازاین‌رو با توجه به لرزه­خیزی کشور ایران و کاستی­های اطلاعات زمین‌لرزه­های ثبت­شده، هدف از این پژوهش برآورد نرخ وقوع مبتنی بر تغییر شکل پوسته ایران برای اولین بار است. برای‌این­منظور از نتایج مدل تغییر ‌شکلی جامع فلات ایران استفاده شد که خروجی اصلی آن نرخ کرنش پیوسته است. در این مطالعه نرخ کرنش به‌دست­آمده از اطلاعات تغییر ‌شکلی، به ممان لرزه‌ای و سپس نرخ وقوع زمین‌لرزه­ها تبدیل شده است. مقایسه نرخ وقوع مبتنی بر تغییر شکل با برآورد نرخ وقوع بلند­‌مدت مبتنی بر کاتالوگ­های موجود نشان می­دهد در تمام ایالت­های لرزه­زمین‌ساخت ایران، نرخ وقوع مبتنی بر تغییر شکل بیش از نرخ وقوع مبتنی بر کاتالوگ است که می­تواند تأثیر چشمگیری در نتایج برآورد خطر لرزه‌ای داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of earthquake occurrence rate based on the crust deformation of Iran

نویسندگان [English]

  • Alireza Lotfi 1
  • Hamid Zafarani 2
  • Alireza Khodaverdian 3
1 International Institute of Earthquake Engineering and Seismology, Tehran, Iran.
2 Professor, International Institute of Earthquake Engineering and Seismology, Tehran, Iran
3 Postdoctoral researcher, ETH, Zurich, Switzerland
چکیده [English]

The Iranian Plateau is one of the most seismically active regions in the world, where the recurrence time of large-magnitude events is often more than a thousand years. The Mw 7.3, 1990 Rudbar earthquake, which caused 40,000 deaths and 500,000 homeless, and the Mw 6.5, 2003 Bam earthquake, which caused around 26,000 losses and 30,000 wounded, are two of the largest and the most destructive earthquakes in the region. Seismic hazard assessment is useful in the classification of areas that are more prone to earthquake losses. The earthquake occurrence rate is an important factor in seismic hazard analysis, which is commonly based on the earthquake catalogs. Hence, providing complete and reliable catalogs is necessary to achieve more accurate estimates. Unfortunately, factors such as the incompleteness of catalogs, the long-term recurrence time of large earthquakes, and the inadequate short-term instrumental record of about 100 years have resulted in unreliable earthquake occurrence rates estimates. To reduce uncertainties, some models have been developed for some places in the world such as California, Canada, Japan, New Zealand, and Italy based on the combination of various data as inputs, such as seismicity information, geological data such as fault slip rates, and geodetic information such as GPS data. The utilization of these models can increase the knowledge about the spatio-temporal distribution of earthquakes and reduce the uncertainty of results. The purpose of this study is to convert the strain rate into the earthquakes occurrence rate for some zones in Iran. Strain rates are derived from the available comprehensive deformation model of the Iranian Plateau, in which the long-term crustal flow of the Iranian Plateau is computed by using various data sets, including the latest fault traces, geologic fault offset rates, GPS velocities, principal stress directions, and velocity boundary conditions. In the comprehensive deformation model of the Iranian Plateau, based on the existing information on relative displacement of geologic features, the long-term geological offset rates for 33 of 171 fault traces were collected as input. Moreover, geodetic velocities of 239 GPS benchmarks were considered. Comparison with the results of the existing catalogs shows that for the whole Iranian Plateau, the occurrence rate based on strain is higher than the occurrence rate based on the catalog. We expect that utilizing the occurrence rate based on strain in the hazard model in further studies can have a significant effect on the ground motion parameters for Iran in comparison with previous catalog-based seismic hazard assessments.
 

کلیدواژه‌ها [English]

  • Iranian Plateau
  • deformation model
  • seismic moment rate
  • strain rate
  • earthquake occurrence rate
 
Alinaghi, A., Koulakov, I., and Thybo, H., 2007, Seismic tomographic imaging of P-and S-waves velocity perturbations in the upper mantle beneath Iran: Geophysical Journal International, 169(3), 1089-1102.
Allen, M. B., Kheirkhah, M., Emami, M. H., and Jones, S. J., 2011, Right-lateral shear across Iran and kinematic change in the Arabia—Eurasia collision zone: Geophysical Journal International, 184(2), 555-574.
Bachmanov, D., Trifonov, V., Hessami, K. T., Kozhurin, A., Ivanova, T., Rogozhin, E., Hademi, M., and Jamali, F., 2004, Active faults in the Zagros and central Iran: Tectonophysics, 380(3-4), 221-241.
Bayer, R., Chery, J., Tatar, M., Vernant, P., Abbassi, M., Masson, F., Nilforoushan, F., Doerflinger, E., Regard, V., and Bellier, O., 2006, Active deformation in Zagros—Makran transition zone inferred from GPS measurements: Geophysical Journal International, 165(1), 373-381.
Beauval, C., Bard, P.-Y, Hainzl, S., and Gueguen, P., 2008, Can strong-motion observations be used to constrain probabilistic seismic-hazard estimates?: Bulletin of the Seismological Society of America, 98(2), 509-520.
Berberian, M., 2005, The 2003 Bam urban earthquake: A predictable seismotectonic pattern along the western margin of the rigid Lut block, southeast Iran: Earthquake Spectra, 21(S1), 35-99,
Berberian, M., 2014, Patterns of historical earthquake ruptures on the Iranian plateau: Developments in Earth Surface Processes, Elsevier, 17, 439-518.
Berberian, M., Petrie, C. A., Potts, D., Chaverdi, A. A., Dusting, A., Zarchi, A. S., Weeks, L., Ghassemi, P., and Noruzi, R., 2014, Archaeoseismicity of the mounds and monuments along the Kazerun Fault (western Zagros, Sw Iranian Plateau) since the Chalcolithic Period: Iranica Antiqua, 49, 1-81.
Berberian, M., and Walker, R., 2010, The Rudbār Mw 7.3 earthquake of 1990 June 20; seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ‘High-Alborz’, Iran: Geophysical Journal International, 182(3), 1577-1602.
Berberian, M., and Yeats, R. S., 1999, Patterns of historical earthquake rupture in the Iranian Plateau: Bulletin of the Seismological Society of America, 89(1), 120-139.
Berberian, M., and Yeats, R. S., 2001, Contribution of archaeological data to studies of earthquake history in the Iranian Plateau: Journal of Structural Geology, 23(2), 563-584.
Bilham, R., 2004, Earthquakes in India and the Himalaya: Tectonics, geodesy and history: Annals of Geophysics, 47(2-3).
Bird, P., and Kagan, Y. Y., 2004, Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings: Bulletin of the Seismological Society of America, 94(6), 2380-2399.
Bird, P., and Kreemer, C., 2014, Revised tectonic forecast of global shallow seismicity based on version 2.1 of the Global Strain Rate Map: Bulletin of the Seismological Society of America, 105(1), 152-166.
Copley, A., and Jackson, J., 2006, Active tectonics of the Turkish-Iranian plateau: Tectonics, 25(6).
Coppersmith, K., 1989, On spatial and temporal clustering of paleoseismic events: Seismological Research Letters, 59, 299-304.
Danciu, L., Şeşetyan, K., Demircioglu, M., Gülen, L., Zare, M., Basili, R., Elias, A., Adamia, S., Tsereteli, N., and Yalçın, H., 2018, The 2014 earthquake model of the middle east: seismogenic sources: Bulletin of Earthquake Engineering, 16(8), 3465-3496.
De Martini, P. M., Hessami, K., Pantosti, D., D'Addezio, G., Alinaghi, H., and Ghafory-Ashtiani, M., 1998, A geologic contribution to the evaluation of the seismic potential of the Kahrizak fault (Tehran, Iran): Tectonophysics, 287(1-4), 187-199.
Djamour, Y., Vernant, P., Nankali, H. R., and Tavakoli, F., 2011, NW Iran-eastern Turkey present-day kinematics: results from the Iranian permanent GPS network: Earth and Planetary Science Letters, 307(1-2), 27-34.
Field, E. H., 2015, UCERF3: A new earthquake forecast for California's complex fault system: US Geological Survey.
Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., and Madden, C., 2014, Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)—The time-independent model: Bulletin of the Seismological Society of America, 104(3), 1122-1180.
Field, E. H., Biasi, G. P., Bird,  P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C., and Michael, A. J., 2015, Long-term time-dependent probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3): Bulletin of the Seismological Society of America, 105(2A), 511-543.
Field, E. H., Dawson, T. E., Felzer, K. R., Frankel, A. D., Gupta, V., Jordan, T. H., Parsons, T., Petersen, M. D., Stein, R. S., and Weldon, R., 2009, Uniform California Earthquake Rupture Forecast, version 2 (UCERF 2): Bulletin of the Seismological Society of America, 99(4), 2053-2107.
Foroutan, M., Meyer, B., Sébrier, M., Nazari, H., Murray, A., Le Dortz, K., Shokri, M., Arnold, M., Aumaître, G., and Bourlès, D., 2014, Late Pleistocene-Holocene right slip rate and paleoseismology of the Nayband fault, western margin of the Lut block, Iran: Journal of Geophysical Research: Solid Earth, 119(4), 3517-3560.
Foroutan, M., Sébrier, M., Nazari, H., Meyer, B., Fattahi, M., Rashidi, A., Le Dortz, K., and Bateman, M., 2012, New evidence for large earthquakes on the Central Iran plateau: palaeoseismology of the Anar fault: Geophysical Journal International, 189(1), 6-18.
Hanks, T. C., and Kanamori, H., 1979, A moment magnitude scale: Journal of Geophysical Research, 84, 2348-2350.
Hessami, K., Jamali, F., and Tabassi, H., 2003, Major active faults of Iran: International Institute of Earthquake Engineering and Seismology, Tehran.
Hessami, K., Mobayyen, F., and Tabassi, H., 2013, The map of active faults of Iran: International Institute of Earthquake Engineering and Seismology, Tehran.
Hessami, K., Nilforoushan, F., and Talbot, C. J., 2006, Active deformation within the Zagros Mountains deduced from GPS measurements: Journal of the Geological Society, 163(1), 143-148.
Kalaneh, S., and Agh-Atabai, M., 2016, Spatial variation of earthquake hazard parameters in the Zagros fold and thrust belt, SW Iran: Natural Hazards, 82(2), 933-946.
Khodaverdian, A., Zafarani, H., and Rahimian, M., 2015, Long term fault slip rates, distributed deformation rates and forecast of seismicity in the Iranian Plateau: Tectonics, 34(10), 2190-2220.
Khodaverdian, A., Zafarani, H., and Rahimian, M., 2016a, Using a physics-based earthquake simulator to evaluate seismic hazard in NW Iran: Geophysical Journal International, 206(1), 379-394.
Khodaverdian, A., Zafarani, H., Rahimian, M., and Dehnamaki, V., 2016b, Seismicity parameters and Sspatially smoothed seismicity model for Iran: Bulletin of the Seismological Society of America, 106(3), 1133-1150.
Khodaverdian, A., Zafarani, H., Schultz, K., and Rahimian, M., 2016c, Recurrence time distributions of large earthquakes in Eastern Iran: Bulletin of the Seismological Society of America, 106(6), 2624-2639.
Kijko, A., 2004, Estimation of the maximum earthquake magnitude, m max: Pure and Applied Geophysics, 161(8), 1655-1681.
Kijko, A., and Sellevoll, M. A., 1989, Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes: Bulletin of the Seismological Society of America, 79(3), 645-654.
Kijko, A., and Sellevoll, M. A., 1990, Estimation of earthquake hazard parameters for incomplete and uncertain data files: Natural Hazards, 3(1), 1-13.
Kijko, A., and Sellevoll, M. A., 1992, Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity: Bulletin of the Seismological Society of America, 82(1), 120-134.
Kijko, A., Smit, A., and Sellevoll, M. A., 2016, Estimation of earthquake hazard parameters from incomplete data files. Part III. Incorporation of uncertainty of earthquake-occurrence model: Bulletin of the Seismological Society of America, 106(3), 1210-1222.
Kreemer, C., Blewitt, G., and Klein, E. C., 2014a, A geodetic plate motion and Global Strain Rate Model: Geochemistry, Geophysics, Geosystems, 15(10), 3849-3889.
Kreemer, C., Klein, G., Shen, Z., Wang, M., Estey, L., Wier, S., and Boler, F., 2014b, Global geodetic strain rate model: GEM Technical Report.
Le Dortz, K., Meyer, B., Sébrier, M., Braucher, R., Nazari, H., Benedetti, L., Fattahi, M., Bourlès, D., Foroutan, M., and Siame, L., 2011, Dating inset terraces and offset fans along the Dehshir Fault (Iran) combining cosmogenic and OSL methods: Geophysical Journal International, 185(3), 1147-1174.
Le Dortz, K., Meyer, B., Sébrier, M., Nazari, H., Braucher, R., Fattahi, M., Benedetti, L., Foroutan, M., Siame, L., and Bourlès, D., 2009, Holocene right-slip rate determined by cosmogenic and OSL dating on the Anar fault, Central Iran: Geophysical Journal International, 179(2), 700-710.
Liu, Z., and Bird, P., 2008, Kinematic modelling of neotectonics in the Persia-Tibet-Burma Orgen: Geophysical Journal International, 172(2), 779-797.
Marco, S., Stein, M., Agnon, A., and Ron, H., 1996, Long-term earthquake clustering: A 50,000-year paleoseismic record in the Dead Sea Graben: Journal of Geophysical Research: Solid Earth, 101(B3), 6179-6191.
Masson, F., Anvari, M., Djamour, Y., Walpersdorf, A., Tavakoli, F., Daignières, M., Nankali, H., and Van Gorp, S., 2007, Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran: Geophysical Journal International, 170(1), 436-440.
Masson, F., Chéry, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F., and Ghafory-Ashtiani, M., 2005, Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data: Geophysical Journal International, 160(1), 217-226.
Masson, F., Djamour, Y., Van Gorp, S., Chéry, J., Tatar, M., Tavakoli, F., Nankali, H., and Vernant, P., 2006, Extension in NW Iran driven by the motion of the South Caspian Basin: Earth and Planetary Science Letters, 252(1), 180-188.
Masson, F., Lehujeur, M., Ziegler, Y., and Doubre, C., 2014, Strain rate tensor in Iran from a new GPS velocity field: Geophysical Journal International, 197, 10-21.
Mazzotti, S., Leonard, L., Cassidy, J., Rogers, G., and Halchuk, S., 2011, Seismic hazard in western Canada from GPS strain rates versus earthquake catalog: Journal of Geophysical Research: Solid Earth, 116(B12).
Mousavi-Bafrouei, S. H., Mirzaei, N., and Shabani, E., 2015, A declustered earthquake catalog for the Iranian Plateau: Annals of Geophysics, 57(6).
Mousavi, Z., Walpersdorf, A., Walker, R., Tavakoli, F., Pathier, E., Nankali, H., Nilfouroushan, F., and Djamour, Y., 2013, Global Positioning System constraints on the active tectonics of NE Iran and the South Caspian region: Earth and Planetary Science Letters, 377, 287-298.
Movaghari, R., JavanDoloei, G., Yang, Y., Tatar, M., and Sadidkhouy, A., 2021, Crustal radial anisotropy of the Iran plateau inferred from ambient noise tomography: Journal of Geophysical Research, Solid Earth, 126(4), e2020JB020236.
Nankali, H., 2011, Slip rate of the Kazerun fault and Main Recent fault (Zagros, Iran) from 3D mechanical modeling: Journal of Asian Earth Sciences 41(1), 89-98.
Nilforoushan, F., Masson, F., Vernant, P., Vigny, C., Martinod, J., Abbassi, M., Nankali, H., Hatzfeld, D., Bayer, R., and Tavakoli, F., 2003, GPS network monitors the Arabia-Eurasia collision deformation in Iran: Journal of Geodesy, 77(7-8), 411-422.
Petersen, M. D., Cao, T., Campbell, K. W., and Frankel, A. D., 2007, Time-independent and time-dependent seismic hazard assessment for the State of California: Uniform California Earthquake Rupture Forecast Model 1.0: Seismological Research Letters 78(1), 99-109.
Sadeghi-Bagherabadi, A., Sobouti, F., Ghods, A., Chen, L., Talebian, M., Motaghi, K., Jiang, M., He, Y., and Ai, Y., 2017, Seismic anisotropy and mantle deformation in western Iran inferred from shear-wave splitting analysis: EGU General Assembly Conference Abstracts.
Scawthorn, C., and Chen, W.-F., 2002, Earthquake Engineering Handbook: CRC press.
Şeşetyan, K., Danciu, L., Tümsa, M. B. D., Giardini, D., Erdik, M., Akkar, S., Gülen, L., Zare, M., Adamia, S., and Ansari, A., 2018, The 2014 seismic hazard model of the Middle East: overview and results: Bulletin of Earthquake Engineering, 16(8), 3535-3566.
Silva, V., 2018, Critical issues on probabilistic earthquake loss assessment: Journal of Earthquake Engineering, 22(9), 1683-1709.
Stein, R. S., 1999, The role of stress transfer in earthquake occurrence: Nature, 402(6762), 605.
Stewart, J. P., Chiou, S.-J., Bray, J. D., Graves, R. W., Somerville, P. G., and Abrahamson, N. A., 2002, Ground motion evaluation procedures for performance-based design: Soil Dynamics and Earthquake Engineering, 22(9-12), 765-772.
Talebian, M., and Jackson, J., 2004, A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran: Geophysical Journal International, 156(3), 506-526.
Tatar, M., Hatzfeld, D., Martinod, J., Walpersdorf, A., Ghafori-Ashtiany, M., and Chéry, J., 2002, The present-day deformation of the central Zagros from GPS measurements: Geophysical Research Letters, 29(19), 33-31-33-34.
Tavakoli, F., Walpersdorf, A., Authemayou, C., Nankali, H., Hatzfeld, D., Tatar, M., Djamour, Y., Nilforoushan, F., and Cotte, N., 2008, Distribution of the right-lateral strike–slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities: Earth and Planetary Science Letters, 275(3-4), 342-347.
Vernant, P., Nilforoushan, F., Chery, J., Bayer, R., Djamour, Y., Masson, F., Nankali, H., Ritz, J.-F., Sedighi, M., and Tavakoli, F., 2004a, Deciphering oblique shortening of central Alborz in Iran using geodetic data: Earth and Planetary Science Letters, 223(1-2), 177-185.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., and Bayer, R., 2004b, Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman: Geophysical Journal International, 157(1), 381-398.
Walpersdorf, A., Hatzfeld, D., Nankali, H., Tavakoli, F., Nilforoushan, F., Tatar, M., Vernant, P., Chéry, J., and Masson, F., 2006, Difference in the GPS deformation pattern of North and Central Zagros (Iran): Geophysical Journal International, 167(3), 1077-1088.
Walpersdorf, A., Manighetti, I., Mousavi, Z., Tavakoli, F., Vergnolle, M., Jadidi, A., Hatzfeld, D., Aghamohammadi, A., Bigot, A., and Djamour, Y., 2014, Present-day kinematics and fault slip rates in eastern Iran, derived from 11 years of GPS data: Journal of Geophysical Research: Solid Earth, 119(2), 1359-1383.
Ward, S. N., 1998, On the consistency of earthquake moment rates, geological fault data, and space geodetic strain: the United States: Geophysical Journal International, 134(1), 172-186.
Yaminifard, F., Sedghi, M. H., Gholamzadeh, A., Tatar, M., and Hessami, K., 2012, Active faulting of the southeastern-most Zagros (Iran): Microearthquake seismicity and crustal structure: Journal of Geodynamics, 55, 56-65.
Zolfaghari, M. R., 2009, Geodetic deformation vs. seismic strain deduced by historical earthquakes across the Alborz Mountains: Journal of Seismology, 13(4), 647-663.