اصلاح و ارزیابی چشمه‌های گردوخاک ناشی از فرسایش بادی در مدل WRF/Chem در غرب آسیا

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشجوی دکترای هواشناسی، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

2 دانشیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

3 استادیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

چکیده

در این پژوهش با هدف ارتقاء نتایج به‌کارگیری مدل WRF/Chem برای ارزیابی غلظت گردوخاک، با استفاده از روش سنجش از دور (داده‌های ماهواره‌ای SEVIRI) و محاسبه پارامترهای فیزیکی مؤثر بر انتشار گردوخاک مانند سرعت باد و رطوبت خاک، مقادیر پارامتر فرسایش­پذیری خاک که تعیین­کننده توزیع چشمه­های گردوخاک است، برای غرب آسیا مجدداً برآورد شد. از مهم‌ترین نوآوری­های این تحقیق، تلفیق بسامد رخدادهای گردوخاک با عوامل مؤثر بر تلاطم جوّی (سرعت اصطکاکی و سرعت همرفتی) و نیز سرعت باد 10 ‌متری است. با توجه به نتایج، وزن‌دهی و تصحیح بسامد رخدادها در شبیه­سازی دقیق‌تر غلظت گردوخاک در موارد مطالعاتی مؤثر است. مهم‌ترین چشمه­های شناسایی­شده در نقشه جدید، چشمه­های گردوخاک مربوط به عراق، سوریه، شرق ایران، سواحل عمان و دریاچه آرال است. مناطق زیادی ازجمله صحرای ترکمنستان و جنوب خلیج فارس که در نقشه پیش‌فرض، چشمه­های گردوخاک محسوب می­شدند، در نقشه جدید تغییر یافته‌اند. نتایج شبیه­سازی برخی رخدادهای گردوخاک با استفاده از نقشه تصحیح­شده و مقایسه آن با نقشه پیش‌فرض از نتایج رضایت­بخشی برخوردار بوده است؛ زیرا بیش‌برآورد شدید غلظت ذرات با استفاده از نقشه پیش‌فرض تا حد زیادی برطرف شده است و از طرف دیگر، توزیع غلظت ذرات نیز تطابق مناسب‌تری را با واقعیت نشان می­دهد که در قیاس با کل عملکرد مدل می­توان از آن چشم‌پوشی کرد. استفاده از مدل تابشی RTTOV در بررسی تغییرات کلی در دمای روشنایی شبیه‌سازی­شده از دیگر نوآوری­های این تحقیق است. نتایج این تحقیق می­تواند در سامانه­های عملیاتی پیش‌بینی گردوخاک استفاده شود. الگوی جدید چشمه­های گردوخاک قبل از اجرای مدل WRF/Chem بر فایل geo اِعمال و چشمه­های گردوخاک جدید جایگزین حالت پیش‌فرض شد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Correction and assessment of dust sources in WRF/Chem, caused by wind erosion, over West Asia

نویسندگان [English]

  • Amirhossein Nikfal 1
  • Abbas Ranjbar SaadatAbadi 2
  • Sahar Tajbakhsh 3
  • Mohamad Moradi 2
1 Ph.D. Student, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran
2 Associate Professor, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran
3 Assistant Professor, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran
چکیده [English]

In this study, using remote sensing and calculating the physical parameters related to dust emission, the soil erodibility as a criterion of dust sources has been re-calculated and added to the WRF/Chem model, to replace the default dust sources (based on topography) in WRF/Chem, over West Asia. SEVIRI Dust RGB products, as the remote sensing data, and ECMWF-ERA5 meteorological data have been extensively used in the geographical identification of dust sources and calculation of their activity. Over 1100 dust sources have been identified by the aim of dust RGB images, and converted to dust frequency map, which at the next step, converted to the weighted frequency map, by applying the turbulence (friction and convection velocity), and 10m wind speed. One of the key innovations in this study is the combination of dust event frequencies (weighted frequencies) with the meteorological factors, including friction velocity, convection velocity, and 10m wind speed. The results show that the weighted dust frequencies are effective in improving the simulation of dust concentration. The spatial distributions of the new dust sources are similar to the default dust sources (based on Ginoux function), and different in many other regions. New redefined dust sources include regions in Iraq, Syria, eastern Iran, northern coasts of Oman Sea, and the Aral Sea. There are considerable regions in the new dust source map, including eastern coasts of Caspian Sea and southern coast of Persian Gulf, which in comparison to the default dust sources are not identified as active dust sources. The distribution and magnitude of the dust concentrations and the results of the WRF/Chem simulations of dust concentrations for two major dust episodes with the new dust sources and comparing them with the simulations with default dust sources show significant improvements. The new erodibility maps as the new West Asia dust sources, developed in this study, result in a relative improvement in the simulated dust concentration. It cannot be expected that all WRF/Chem dust simulations with the new dust sources in any region of the study area produce more accurate results.
    One of the most important purposes of this study was to provide a new dust source map that makes the WRF/Chem results of dust concentration more reliable; therefore, it can be used in operational and warning advisory systems for sand and dust storms. It is shown that for some cases the simulated dust concentrations are not different, using the weighted dust frequencies or only the dust frequencies. But in some other cases (especially eastern Iran), there are major differences between the simulated dust concentration and station data, in a way that confirms the significant role of weighted frequencies in reaching better erodibility factors (dust sources) in comparison to the dust frequencies alone. The capability of the WRF model is a key factor in correcting the dust sources. Good accuracy of WRF in wind simulation makes it a capable model in predicting the temporal and spatial variability of the dust storms. However, the stochastic variables, including the turbulence, can affect the accuracy of model.

کلیدواژه‌ها [English]

  • WRF/Chem model
  • dust sources
  • ERA5 data
  • SEVIRI dust RGB
  • RTTOV
خسروسرشکی، ل.، ایران‌نژاد، پ.، علی‌اکبری بیدختی، ع.، 1393، مقایسه طرح‌واره­های گسیل گردوخاک در برآورد شار قائم آن در نواحی چشمه‌ای ایران: مجله فیزیک زمین و فضا، 40(1)، 201-216.
Banks, J. R., Schepanski, K., Heinold, B., Hünerbein, A., and Brindley, H. E., 2018, The influence of dust optical properties on the colour of simulated MSG-SEVIRI Desert Dust infrared imagery: Atmospheric Chemistry and Physics, 18(13), 9681-9703.
Brutsaert, W., 1992, Stability correction functions for the mean wind speed and temperature in the unstable surface layer: Geophysical Research Letters, 19(5), 469-472.
Cremades, P. G., Fernández, R. P., Alllende, D. G., Mulena, G. C., and Puliafito, S. E., 2017, High resolution satellite derived erodibility factors for WRF/Chem windblown dust simulations in Argentina: Atmósfera, 30(1), 11-25.
Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., and Crutzen, P. J., 1996, Role of mineral aerosol as a reactive surface in the global troposphere: Journal of Geophysical Research, 101, 22869-22889.
Dudhia, J., 1989, Numerical study of convection observed during winter Monsoon experiment using a mesoscale two-dimensional model: Journal of the Atmospheric Sciences, 46(20), 3077-3107.
Eltahan, M., Shokr, M., and Sherif, A. O., 2018, Simulation of severe dust events over Egypt using tuned dust schemes in Weather Research Forecast (WRF-Chem): Atmosphere, 9, 246, doi:10.3390/atmos9070246.
Fouquart, Y., Bonnell, B., Brogniez, G., et al., 1987, Observations of Saharan aerosols: results of ECLATS field experiment, Part II: Broadband radiative characteristics of the aerosols and vertical radiative flux divergence: Journal of Applied Meteorology and Climatology, 26, 38-52.
Freitas, S. R., Longo, K. M., Silva Dias, M. A. F., et al., 2009, The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS): Atmospheric Chemistry and Physics, 9, 2843-2861.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S. J., 2001, Sources and distributions of dust aerosols simulated with the GOCART model: Journal of Geophysical Research: Atmospheres, 106(D17), 20255-20273.
Grell, G. A., Peckham, S. E., Schmitz, R., et al., 2005, Fully coupled 'online' chemistry within the WRF model: Atmospheric Environment, 39, 6957-6976.
Goudie, A. S., and Middleton, N. J., 2006, Desert Dust in the Global System: Springer, Berlin/Heidelburg, Germany, 287p.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall, R., 1993, Iso-prene and monoterpene emission rate variability: Model evaluations and sensitivity analyses: Journal of Geophysical Research, 98(d7), 12,609-12,617.
Hersbach, H., 2016, The ERA5 Atmospheric Reanalysis: AGU fall meeting abstracts, NG33D-01.
Hocking, J., Vidot, J., Brunel, P., Roquet, P., Silveira, B., Turner, E., and Lupu, C., 2021, A new gas absorption optical depth parameterisation for RTTOV version 13: Geoscientific Model Development, 14(5), 2899-2915.
Kandler, K., SchüTZ, L., Deutscher, C., et al., 2009, Size distribution, mass concentration, chemical and mineralogical composition, and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006: Tellus B, 61(1), 32-50.
Kumar, R., Barth, M. C., Pfister, G. G., Naja, M., and Brasseur, G. P., 2014, WRF-Chem simulations of a typical pre-monsoon dust storm in northern India: influences on aerosol optical properties and radiation budget: Atmospheric Chemistry and Physics, 14, 2431–2446.
LeGrand, S. L., Polashenski, C., Letcher, T. W., Creighton, G. A., Peckham, S. E., and Cetola, J. D., 2019, The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3. 8.1.: Geoscientific Model Development, 12(1), 131-166.
Matricardi, M., 2010, A principal component based version of the RTTOV fast radiative transfer model: Quarterly Journal of the Royal Meteorological Society, 136(652), 1823-1835.
Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A., Jickells, T. D., Kubilay, N., Prospero, J. M., and Tegen, I., 2005, Atmospheric global dust cycle and iron inputs to the ocean: Global Biogeochemical Cycles, 19(4), GB4025, doi:10.1029/2004GB002402.
Nabavi, S. O., Haimberger, L., and Samimi, C., 2017, Sensitivity of WRF-chem predictions to dust source function specification in West Asia: Aeolian Research, 24, 115-131.
Okeson, C. D., Riley, M. R., Fernandez, A., and Wendt, J. O., 2003, Impact of the composition of combustion generated fine particles on epithelial cell toxicity: influences of metals on metabolism: Chemosphere, 51, 1121-1128.
Otkin, J. A., Greenwald, T. J., Sieglaff, J., and Huang, H. L., 2009, Validation of a large-scale simulated brightness temperature dataset using SEVIRI satellite observations: Journal of Applied Meteorology and Climatology, 48(8), 1613-1626.
Saide, P. E., Carmichael, G. R., Spak, S. N., et al., 2011, Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRFeChem CO tracer model: Atmospheric Environment, 45, 2769-2780.
Rayner, K. N., and Watson, I. D., 1991, Operational prediction of daytime mixed layer heights for dispersion modelling: Atmospheric Environment, Part A., General Topics, 25(8), 1427-1436.
Rizza, U., Barnaba, F., Miglietta, M. M., Mangia, C., Di Liberto, L., Dionisi, D., Costabile, F., Grasso, F., and Gobbi, G. P., 2017, WRF-Chem model simulations of a dust outbreak over the central Mediterranean and comparison with multi-sensor desert dust observations: Atmospheric Chemistry and Physics, 17, 93–115.
Rosenberg, N. J., Blad, B. L., and Verma, S. B., 1983, Microclimate: The Biological Environment (Second Edition): John Wiley and Sons, 495 pp.
Schepanski, K., Tegen, I., Laurent, B., Heinold, B., and Macke, A., 2007, A new Saharan dust source activation frequency map derived from MSG-SEVIRI IR-channels: Geophysical Research Letters, 34(18), L18803.
Schepanski, K., Tegen, I., Todd, M. C., Heinold, B., Bönisch, G., Laurent, B., and Macke, A., 2009, Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models: Journal of Geophysical Research: Atmospheres, 114(D10).
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X.-Y., 2019, A description of the advanced research WRF version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., doi:10.5065/1dfh-6p97.
Simpson, D., Guenther, A., Hewitt, C. N., and Steinbrecher, R., 1995, Biogenic emissions in Europe: Journal of Geophysical Research, 100(d11), 22,875-22,890.
Tegen, I., 2003, Modeling the mineral dust aerosol cycle in the climate system: Max Planck-Institute for Biogeochemistry, Germany.
Thomas, D. S. G., 2011, Arid Zone Geomorphology: Process, Form and Change in Drylands, 3rd ed.: Wiley.
Wang, T., Jiang, F., Deng, D., et al., 2012, Urban air quality and regional haze weather forecast for Yangtze River Delta region: Atmospheric Environment, 58, 70-83.
United Nations Environment Programme (UNEP), World Meteorological Organization (WMO), United Nations Convention to Combat Desertification (UNCCD). Global Assessment of Sand and Dust Storms, United Nations Environment Programme: Nairobi, Kenya, 2016.
Wesely, M. L., 2007, Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models: Atmospheric Environment, 41, 52-63.
Zhang, Y., 2008, Online-coupled meteorology and chemistry models: history, current status and outlook: Atmospheric Chemistry and Physics, 8, 2895-2932.
Zhang, H. S., Zhu, H., Peng, Y., Kang, L., Chen, J., and Park, S.-U., 2007, Experiment on dust flux during dust storm periods over sand desert area: Acta Meteorologica Sinica, 22(2), 239–247.
 
Ying, Z., Tie, X., Madronich, S., Li, G., and Massie, S., 2011, Simulation of regional dust and its effect on photochemistry in the Mexico City area during MILAGRO experiment: Atmospheric Environment, 45(15), 2549-2558.