افراز نرخ لغزش در گسل شمال تبریز با استفاده از مشاهدات دائم و دوره‌ای GPS

نوع مقاله : مقاله پژوهشی‌

نویسنده

استادیار دانشکده عمران، دانشگاه تبریز، تبریز، ایران.

چکیده

برای گسل ایده­آل در محیط کشسان، توزیع لغزش حول یک مقدار مرکزی بیشینه متقارن است. در طبیعت، توزیع لغزش در صفحه یک گسل به برهم‌کنش پارامترهایی ازجمله هندسه خود گسل و گسل­های مجاور، شرایط مرزی روی گسل­ها و مناطق دور و معادله رفتاری محیط اطراف بستگی دارد. مطالعه این توزیع، نقش مهمی در بررسی انتقال لرزه­خیزی دارد. باتوجه به واقع شدن کلان‌شهر تبریز در مجاورت گسل شمال تبریز، مطالعه برهم‌کنش مکانیکی بین بخش­های مختلف این گسل از اهمیت ویژه‌ای جهت تحلیل خطر لرزه‌ای برخوردار است.
    در این تحقیق با درنظرگرفتن یک نیم­فضای کشسان همگن و همسان، اطلاعات هندسی گسل و پارامترهای رئولوژیکی منطقه از منابع مختلف انتخاب و ثابت فرض شد. شرایط مرزی کرنش با استفاده از مشاهدات دائم و دوره‌ای GPS شمال غرب کشور محاسبه و گسل در راستای عمود برهم قفل و در راستای مماسی به‌صورت آزاد رها شد. با اعمال شرایط مرزی در حالت­های مختلف، نرخ سالیانه لغزش روی گسل افراز شد. جهت افراز از روش اجزای مرزی استفاده و مدل تحلیلی اکادا نیز برای حل اساسی انتخاب شد.
    نتایج نشان­دهنده وابستگی نرخ لغزش توزیعی روی گسل به شرایط مرزی و مؤید وجود برهم‌کنش بین بخش­های مختلف این گسل است. همچنین نرخ لغزش افرازی، امتدادلغز راست‌گرد بودن گسل را در کلیه حالت­ها نشان می­دهد. نرخ لغزش توزیعی روی کل صفحه گسل تقریباً متقارن است و در حوالی کلان‌شهر تبریز به بیشینه مقدار خود یعنی 5/5 میلی­متر در سال می­رسد. نزدیک بودن نرخ لغزش افرازشده به مقادیر دیرینه­لرزه‌شناسی نشان­دهنده نزدیک به واقعیت بودن نتایج افراز با روش اجزای مرزی نسبت به نتایج دیگر روش­های تحلیلی و عددی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Slip rate partitioning in the North Tabriz fault using permanent and campaign GPS observables

نویسنده [English]

  • Asghar Rastbood
Assistant Professor, Civil Engineering Faculty, University of Tabriz, Tabriz, Iran
چکیده [English]

Fault slip distribution plays an important role in earthquake studies. Because faults are loaded at very slow rates in continental interiors, interaction among faults and resulting slip distribution can give rise to earthquakes on other faults after a long period of quiescence and seismicity can migrate from one fault to the other.
    In this research, slip partitioning was done along the North Tabriz Fault (NTF). First, an elastic and homogeneous half space was considered for the study area. Then geometric data of NTF collected from geological and geophysical references including fault length, width, dip, and locking depth. For Lame coefficients, we used average global values. Both mentioned geometrical and physical data were kept fixed in the modeling process.
    Then, displacement gradient tensor that best fits the study area estimated using GPS data by least squares method. Next, strain rate tensor and finally stress rate tensor were estimated using generalized Hook’s law. Stress rate tensor acts as a boundary condition in the model. As other boundary conditions, the NTF was locked in normal direction but it was allowed to slip freely in strike and dip directions under the influence of boundary conditions.
    Our problem involves a medium containing NTF. Each fault section has two surfaces or boundaries, one effectively coinciding with the other. A boundary element method called displacement discontinuity can cope with this problem. It is based on the analytical solution (Green’s function) to the problem of a constant discontinuity in displacement over a finite line segment in a plane of a half space elastic solid. Analytical solution of Okada (1985) is used as Green’s function for modeling.
    Regarding the strike changes of NTF, the fault surface was divided by different segments in strike direction with constant strike and dip. As a result, we had eleven fault segments. Next, fault segment surfaces were divided into elements. Finally, we had free slipping elements in strike and dip directions as input for modeling. The results indicate the dependency of the distributed slip rate on the boundary conditions and confirm the existence of interaction among different parts of fault. Also, partitioned slip rate shows that NTF is right-lateral strike slip fault in all cases. Moreover, it is almost symmetric and reaches its maximum near the Tabriz metropolis. We show that the maximum slip rate in the fault plane is reduced by partitioning, which it will be definitely closer to reality. According to the meshing done for slip rate partitioning, we get a maximum slip rate of 5.5 mm/year in the northern part of Tabriz city.
The proximity of the partitioned slip rate to the paleo-seismic values indicates the closeness of the partitioning results to reality with the Boundary Elements Method compared to other analytical and numerical methods.

کلیدواژه‌ها [English]

  • Slip rate partitioning
  • mechanical interaction
  • Boundary Elements Method
  • GPS observation
  • North Tabriza Fault (NTF)
Berberian, M., 1977, Seismic sources of the Transcaucasian historical earthquakes, in Giardini, D., and Balassanian, S., eds., Historical and Prehistorical Earthquakes in the Caucasus: Kluwer Academic Press, the Netherlands, 2, 233–311.
‌‌ Berberian, M., and Arshadi, S., 1976, On the evidence of the youngest activity of the North Tabriz Fault and the seismicity of Tabriz city: Geological Survey of Iran, Report no. 39, 397–418.
Berberian, M., and Yeats, R. S., 1999, Patterns of historical earthquake rupture in the Iranian Plateau: Bulletin of the Seismological Society of America, 89, 120-139.
Bürgmann, R., Pollard, D. D., and Martel, S. J., 1994, Slip distributions on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction: Journal of Structural Geology, 16, 12, 1675-1690.

Cardozo, N., and Allmendinger, R. W., 2009, SSPX: A program to compute strain from displacement/velocity data: Computers & Geosciences, 25(6), 1343-1357.

Crouch, S. L., 1976, Solution of plain elasticity problems by the displacement discontinuity method: International Journal for Numerical Methods in Engineering, 10(2), 301-343.
 
Crouch, S. L., and Starfield, A. M., 1983, Boundary Element Methods in Solid Mechanics: George Allen & Unwin Publication.
Djamour, Y., Vernant, P., Nankali, H. R., and Tavakoli, F., 2011, Nw Iran-Eastern Turkey present-day kinematics: Results from the Iranian permanent GPS network: Earth and Planetary Science Letters, 307(1–2), 27-34.
Gomberg, J., and Ellis, M., 1994, Topography and tectonics of the central New Madrid seismic zone: Results of numerical experiments using a three-dimensional boundary-element program: Journal of Geophysical Research, 99, B10, 20299-20310.
Haji-Aghajany, S., Voosoghi, B., and Yazdian, A., 2017, Estimation of North Tabriz Fault parameters using neural networks and 3D tropospherically corrected surface displacement field: Geomatics, Natural Hazards Risk, 8(2), 918-932, https://doi.org/10.1080/19475705.2017.1289248.
Haji-Aghajany, S., Voosoghi, B., and Yazdian, A., 2019, Estimating the slip rate on the North Tabriz Fault (Iran) from InSAR measurements with tropospheric correction using 3D ray tracing technique: Advances in Space Research, 64, 2199–2208.
Hessami, K., Jamali, F., and Tabassi, H., 2003, Map of Major Active Faults of Iran: International Institute of Earthquake Engineering and Seismology, Available from: www. iiees. ac. ir/Seismology/ActiveFault. pdf.
Hessami, K., Pantosti, D., Tabassi, H., Shabanian, E., Abbasssi, M. R., Feghhi, K., and Solaymani, S., 2003, Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results: Annals of Geophysics, 46(5), 903-915.
Hossein-Khan-Nazer, N., 1999, Geomorphological map of Sardrud: Geological Survey of Iran, Report sheet 5266 III, series K753.
Jackson, J., 1992, Partitioning of strike-slip and convergent motion between Eurasia and Arabia in Eastern Turkey and the Caucasus: Journal of Geophysical Research, 97(B9), 12471-12479.
Karakhanian, A. S., Trifonov, V. G., Philip, H., Avagyan, A., Hessami, K., Jamali, F., Bayraktutan, M. S., Bagdassarian, H., Arakelian, S., Davtian, V., and Adilkhanyan, A., 2004, Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran: Tectonophysics, 380(3), 189–219.
Karimzadeh, S., Cakir, Z., Osmanoglu, B., Schmalzle, G., Miyajima, M., Amiraslanzadeh, R., and Djamour, Y., 2013, Interseismic strain accumulation across the North Tabriz Fault (NW Iran) deduced from InSAR time series: Journal of Geodynamics, 66, 53–58.
Khodaverdian, A., Zafarani, H., and Rahimian, M., 2015, Long term fault slip rates, distributed deformation rates and forecast of seismicity in the Iranian Plateau: Tectonics, 34(10), 2190–2220, https://doi.org/10.1002/2014TC003796.
Khodaverdian, A., Zafarani, H., and Rahimian, M., 2016, Using a physics-based earthquake simulator to evaluate seismic hazard in NW Iran: Geophysical Journal International, 206(1), 379–394, https://doi.org/10.1093/gji/ggw157.
Maerten, F., Resor, P., Pollard, D., and Maerten, L., 2005, Inverting for slip on three-dimensional fault surfaces using angular dislocations: Bulletin of the Seismological Society of America, 95(5), 1654-1665.
Marshall, S. T., Cooke, M. L., and Owen S. E., 2008, Effects of nonplanar fault topology and mechanical interaction on fault-slip distributions in the Ventura Basin, California: Bulletin of the Seismological Society of America, 98(3), 1113-1127.
Mase, G. T., and Mase, G. M., 1999, Continuum Mechanics for Engineers: CRC Press.
Masson, F., Djamour, Y., Van-Gorp, S., Chéry, J., Tatar, M., Tavakoli, F., Nankali, H., and Vernant, P., 2006, Extension in Nw Iran driven by the motion of the South Caspian Basin: Earth and Planetary Science Letters, 252(1–2), 180-188.
Means, W. D., 1976, Stress and Strain: Basic Concepts Of Continuum Mechanics For Geologists: Springer, New York.
Meigs, A. J., Cooke, M. L., and Marshall, S. T., 2008, Using vertical rock-uplift patterns to constrain the three-dimensional fault configuration in the Los Angeles Basin: Bulletin of the Seismological Soceity of America, 98(2), 106-123.
Menke, W., 1984, Geophysical Data Analysis: Discrete Inverse Theory: Academic Press, Orlando, FLa, p. 260.
Okada, Y., 1985, Surface deformation due to shear and tensile faults in a half-space: Bulletin of the Seismological Society of America, 75(4), 1135-1154.
Pedrami, M., 1987, Quaternary stratigraphy of Iran: Geologyical Survey of Iran, Internal Report, Serial No. 551.79 (55).
Pollard, D. D., and Segall, P., 1987, Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces, in Atkinson, B. K., ed., Fracture Mechanics of Rock, 277-349.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in C: The Art of Scientific Computing, second ed.: Cambridge University Press, Cambridge, UK.
Rizza, M., Vernant, J., Ritz, F., Peyret, M., Nankali, H., Nazari, H., Djamour, Y., Salamati, R., Tavakoli, F., Chery, J., Mahan, S., and Masson, F., 2013, Morphotectonic and geodetic evidence for a constant slip-rate over the last 45 kyr along the Tabriz Fault (Iran): Geophysical Journal International, 199(1), 25–37.
Solaymani Azad, S., 2009, Evaluation de l’aléa sismique pour les villes de Téhéran, Tabriz et Zandjan dans le NW de l’Iran. Approche morphotectnique et paléosismologique: PhD. thesis, University of Montpellier.
Sun, W., Okubo, S., and Vanicek, P., 1996, Global displacements caused by point dislocations in a realistic Earth model: Journal of Geophysical Research, 101, B4, 8561-8577.
Sun, W., and Okubo, S., 2002, Effects of earth's spherical curvature and radial heterogeneity in dislocation studies—for a point dislocation: Geophysical Research Letters, 29(12), 1605.
Thomas, A. L., 1993, POLY3D: A three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the Earth’s crust: M.Sc. thesis, Stanford University.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abassi, M. R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., and Chery, J., 2004, Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman: Geophysical Journal International, 157, 381-398.
Wang, R., Martin, L. F., and Roth, F., 2006, PSGRN/PSCMP - a new code for calculating co-postseismic deformations and geopotential changes based on the viscoelastic-gravitational dislocation theory: Computers & Geosciences, 32, 527-541.
Yousefi-Bavil, A., and Moayyed, M., 2015, Paleo and modern stress regimes of Central North Tabriz Fault, Eastern Azerbaijan Province, NW Iran: Journal of Earth Science, 26(3), 361–372.