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Abstract 
In order to investigate the scope of uncertainty in projections of GCMs for Tehran province, 
a multi-model projection composed of 15 models is employed. The projected changes in 
minimum temperature, maximum temperature, precipitation, and solar radiation under the 
A1B scenario equivalent to RCP4.5 for Tehran province are investigated for 2011-2030, 
2046-2065, and 2080-2099. GCM projections for the study region are downscaled by the 
LARS-WG5 model. In climate change impact assessment studies, due to the influence of 
different sources of uncertainty on the output of the predicting system, projections do not 
have sufficient confidence. Therefore, it is recommended that for quantifying the range of 
uncertainty in the projections, the maximum number of available GCM models be used in 
simulations. In this regard, 15 GCMs used in this study are a subset of the CMIP4 models  
used in the IPCC 4th assessment report published in 2007. All these models are the coupled 
Atmospheric-Oceanic models and have been run for the 1960-2100 period. Uncertainty 
among the projections is evaluated from three perspectives: large-scale climate scenarios, 
downscaled values, and mean decadal changes. 15 GCMs unanimously project an increasing 
trend in the temperature for the study region. Also, uncertainty in the projections for the 
summer months is greater than projection uncertainty for other months. The mean absolute 
surface temperature increase for the three periods is projected to be about 0.8°C, 2.4°C, and 
3.8°C in the summers, respectively. The uncertainty of the multi-model projections for pre-
cipitation in summer seasons and the radiation in the springs and falls is higher than in other 
seasons for the study region. Model projections indicate that for the three future periods and 
relative to their baseline period, springtime precipitation will decrease about 5%, 10%, and 
20%, and springtime radiation will increase about 0.5%, 1.5%, and 3%, respectively. The 
projected mean decadal changes indicate an increase in temperature and radiation and a de-
crease in precipitation. Furthermore, the performance of the GCMs in simulating the baseline 
climate by the MOTP method does not indicate any distinct pattern among the GCMs for 
the study region. The future projection of temperature confirms that Tehran will experience 
hotter summers in the future compared to the base period. This, together with the increased 
sunshine in the springs and summers, can increase the frequency of temperature- and radia-
tion-related phenomena such as photochemical pollution and may degrade the future sum-
mertime air quality in the study region. Moreover, the projected reduction in winter and 
spring precipitation, together with increased temperature, may increase the demands in the 
region.  
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1    Introduction 
General Circulation Models (GCMs) are 
considered important tools for simulating 
the future global climate. These models 
are able to simulate different earth systems 
such as the atmosphere, oceans, and 
earth’s surface. However, projections of 
these models have low confidence and 
high uncertainty. Therefore, in climate 
change studies, the Intergovernmental 
Panel on Climate Change (IPCC) recom-
mends using multiple GCMs in climate 
simulations to consider the range of uncer-
tainty in the projections (Parry et al., 
2007). Based on this suggestion, several 
studies have been conducted using the 
multi-model ensemble approach in cli-
mate change simulations (Caballero et al., 
2007; Lopez et al., 2009; Beyene et al., 
2010; Hay and McCabe, 2010; Raje and 
Mujumdar, 2010; Setegn et al., 2011). 
Adopting this approach, several studies 
have addressed the performance of the 
models in simulations. Giorgi and Mearns 
(2002) defined ‘model performance’ and 
‘model convergence’ criteria as the two 
validation criteria for evaluating the skill 
of the GCMs in simulating climate varia-
bles in the present and future climates. By 
these two criteria, they evaluated the per-
formance of nine GCM models in simulat-
ing mean seasonal temperature and pre-
cipitation for 22 regions on the Earth by 
employing the Reliability Ensemble Aver-
aging (REA) method. This method re-
duces the range of uncertainty in the sim-
ulations by minimizing the effect of the 
outlier models (models with weak perfor-
mance). These two criteria have been ad-
dressed in several studies and with differ-
ent techniques (Perkins et al., 2007; Mur-
phy et al., 2004; Tebaldi and Knutti, 2007; 
Giorgi and Mearns, 2003; Tebaldi et al., 
2005; Knutti et al., 2010). Perkins et al. 
(2007) evaluated the performance of 14 
GCM models based on their skill in simu-
lating the baseline period in 12 regions in 
Australia. By using the daily simulations 

of precipitation, minimum temperature, 
and maximum temperature and calculat-
ing the probability distribution functions 
of the observed and simulated variables, 
they ranked the GCM models based on 
their skill in simulating the climate varia-
bles over Australia. Wilby and Harris 
(2006), by proposing a probabilistic struc-
ture, evaluated the impact of different un-
certainty sources in simulating annual 
flows. In their study, they used four 
GCMs, two downscaling techniques, two 
hydrological models, and two emission 
scenarios, and investigated the influence 
of each source on output results. Moreo-
ver, Dessai and Hulme (2007), by using 
two GCMs investigated present uncer-
tainty in each part of the modeling process 
of simulating the climate change impact 
on water  
    resources. Results of these two studies 
showed that if GCM variables are used as 
the inputs to the hydrological impact as-
sessment models, the uncertainty of the 
GCM models will influence the final re-
sults, and the influence of GCMs will be 
greater than other sources of uncertainty. 
In another study, Semenov, and Stratono-
vitch (2010), by using a combination of 
outputs of fifteen GCMs and the LARS-
WG statistical downscaling model, inves-
tigated the uncertainty of these models in 
projecting the impact of climate change on 
the probability of heat stress during the 
flowering of wheat at four European loca-
tions. Rahmani and Zarghami (2013) in-
vestigate the performance of 15 GCMs in 
projecting the impact of climate change on 
temperature and precipitation in the north-
western region of Iran in the period of 
2011-2030 by using the Ordered 
Weighted Averaging (OWA) approach. 
Likewise, Gohari et al. (2013) investi-
gated the uncertainty in projecting the im-
pact of climate change on gains and water 
demand by projecting the temperature and 
precipitation for the 2015-2044 period in 
the Zayanderood watershed by using 
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multi-model ensemble scenarios. In both 
studies, the LARS-WG model was used to 
downscale the GCM outputs. 
    Climate change is projected to impact 
each component of the climate system in 
all regions of the world, but with different 
magnitude and confidence (IPCC, 2021; 
Mejia et al., 2018; Mosadegh et al., 2018; 
Mosadegh and Nolin, 2020). A few stud-
ies have investigated climate model pro-
jections of changes in climate variables 
over the 21st century for the Tehran region 
(Mosadegh and Babaeian, 2021), and have 
addressed the uncertainty of these projec-
tions (Mosadegh et al., 2013), and have in-
vestigated the potential impact of the pro-
jected changes in climate variables on 
other aspects of the environment such as 
air quality (Mosadegh et al., 2022). In the 
present study, the range of changes in tem-
perature, solar radiation, and precipitation 
under climate change in the present cen-
tury has been investigated in an urban en-
vironment. For this purpose, concerning 
the maximum use of GCMs, projections of 
15 GCMs, which were downscaled by us-
ing the LARS-WG5 stochastic weather 
generator for three periods of 2011-2030, 
2046-2065, and 2070-2099, have been in-
cluded in this study to involve the range of 
uncertainty of the models in projections. 
GCM projections were investigated based 
on the performance of the models in sim-
ulating the present climate (historical pe-
riod) and convergence of the simulations 
for the three future periods. Finally, GCM 
simulations were evaluated to identify 
which model would be more skillful over 
the study region. 
 
2    Methodology 
2.1    Study region 
Dushan Tappeh synoptic station is located 
east of Tehran at 35° 42' N, and 51° 20' E 
with a height of 1209.2 m above mean sea 
level. This station was selected due to hav-
ing the longest observations in the study 
region, and the 1972-2009 period with  
 

38-year daily observations was selected as 
the baseline period to synchronize with the 
historical period of GCMs. In preparing 
the LARS-WG input scenario file, daily 
observations of the baseline period are 
used. Therefore, observations of daily pre-
cipitation, daily minimum temperature, 
and daily maximum temperature for every 
single day of the baseline period were ex-
tracted from this station. Solar radiation 
was not available for the baseline period 
in the study region. Therefore, daily total 
sunshine hours were used as an alternative 
to the radiation input. LARS-WG uses a 
regression approach to convert daily sun-
shine hours to daily total solar radiation 
received by the Earth’s surface at a site 
(Rietveld, 1978).   
 
2.2    GCMs and emission scenarios 
Currently, the main and the most powerful 
tools for global climate change projections 
are the GCMs (Giorgi and Francisco, 
2001; Lane et al., 1999; Mitchell, 2003). 
These models are based on physical con-
cepts defined by mathematical equations 
solved on a three-dimensional grid on the 
Earth. 15 GCMs used in this study are a 
subset of the models which are used in the 
IPCC 4th assessment report which was 
published in 2007. All these models are 
the coupled Atmospheric-Oceanic mod-
els, and most of them have been run for the 
1960-2100 period. Features of these 15 
models are presented in table 1. For simu-
lating the future climate, the models con-
sider an estimate of future emissions of 
greenhouse gases as their input. These es-
timates are called emission scenarios, 
which consider a wide range of effective 
factors such as future human population, 
and economic and technological factors 
affecting emissions of greenhouse gases 
and aerosols. In this study, A1B emission 
scenarios equivalent to RCP4.5 from 
among SRES scenarios are used. This sce-
nario is considered a moderate scenario, 
and most of the GCMs have used this sce-
nario in their climate simulations. 
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2.3    Downscaling 
In this study, the LARS-WG5 model was 
used to downscale the GCM simulations. 
LARS-WG is a statistical downscaling 
model placed among stochastic weather 
generator tools. Weather generators can 
simulate statistical characteristics of local 
climate variables and generate local-scale 
daily climate scenarios for a specific sta-
tion (Wilby et al., 2004). First, in the cali-
bration step, the model extracts the statis-
tical characteristics of each variable from 
long-term baseline observations and, by 
using these characteristics, regenerates the 
probability distribution of the variables for 
the baseline period. Then, in the quality 
test step, the model compares the statisti-
cal characteristics of the generated and ob-
served variables in each month, assuming 
that the observations are a random sample 
from the existing sample which is consid-
ered as the true climate at the site. The 
comparison of the generated and observed 
data is done by performing some statistical 
tests such as t, F, and K-S tests, which are 
for comparing means, standard deviations, 
and probability distributions of the two 
data sets, respectively. Each test delivers 
test statistics and p-values for each month. 
The p-value is computed at the 0.05 sig-
nificance level, and the values above this 
level indicate the high probability of simi-

larity between the two data sets. Eventu-
ally, in the final step, using the calculated 
statistical characteristics of the local cli-
mate and GCM climate scenarios for the 
study grid, daily time series of each varia-
ble is generated for the desired period in 
the future (Semenov and Barrow 2002). 
 

2.4   Uncertainty in climate modeling 
Studies show that GCMs provide a realis-
tic projection of the future climate (Solo-
mon et al., 2007). The ability of GCMs to 
reproduce a broad range of climate attrib-
utes increases the confidence of climate 
scientists that key physical processes are 
included in climate change simulations 
(Doblas-Reyes et al., 2006; Palmer et al., 
2004; Palmer et al., 2005). However, in 
climate change studies and in different 
parts of simulating the climate variables, 
different sources of uncertainty exist that 
can influence the final output of the study. 
Giorgi and Francisco (2001) showed that 
the main sources of uncertainty in climate 
change simulations on a regional scale 
stem from uncertainty in greenhouse gas 
emission scenarios, uncertainty in GCM 
simulations and their internal differences, 
and uncertainties in different methods of 
downscaling GCM simulations. Further-
more, Wilby and Harris (2006) and Dessai 
and   Hulme    (2007)  showed  that  GCM  

 
Table 1: Features of the GCMs from IPCC AR4 used in this study 

Country Developer GCM Model acro-
nym 

Grid resolu-
tion 

Emission scenarios 

Australia Commonwealth Scientific and Industrial 
Research Organization 

CSIRO-MK3.0 CSMK3 1.9° × 1.9° SRA1B, SRB1 

Canada Canadian Centre for Climate Modeling 
and Analysis 

CGCM33.1 (T47) CGMR 2.8° × 2.8° SRA1B 

China Institute of Atmospheric Physics FGOALS-g1.0 FGOALS 2.8° × 2.8° SRA1B, SRB1 
France Centre National de Recherches Meteor-

ologiques 
CNRM-CM3 CNCM3 1.9° × 1.9° SRA1B, SRA2 

France Institute Pierre Simon Laplace IPSL-CM4 IPCM4 2.5° × 3.75° SRA1B, SRB1, SRA2 
Germany Max-Planck Institute for Meteorology ECHAM5-OM MPEH5 1.9° × 1.9° SRA1B, SRB1, SRA2 
Japan National Institute for Environmental 

Studies 
MRI-CGCM2.3.2 MIHR 2.8° × 2.8° SRA1B, SRB1 

Norway Bjerknes Centre for Climate Research BCM2.0 BCM2 1.9° × 1.9° SRA1B, SRB1 
Russia Institute for Numerical Mathematics INM-CM3.0 INCM3 4° × 5° SRA1B, SRB1, SRA2 
UK UK Meteorological Office HadCM3 HADCM3 2.5° × 3.75° SRA1B, SRB1, SRA2 
  HadGEM1 HADGEM 1.3° × 1.9° SRA1B, SRA2 
USA Geophysical Fluid Dynamics Lab GFDL-CM2.1 GFCM21 2.0° × 2.5° SRA1B, SRB1, SRA2 
USA Goddard Institute for Space Studies GISS-AOM GIAOM 3° × 4° SRA1B, SRB1 
USA National Centre for Atmospheric Re-

search 
PCM NCPCM 2.8° × 2.8° SRA1B, SRB1 

   CCSM3 NCCCS 1.4° × 1.4° SRA1B, SRB1, SRA2 
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models have the highest uncertainty com-
pared to other components of hydrological 
impact assessment systems.    
   Intercomparison studies of GCMs indi-
cate that climate variables are simulated 
with different degrees of accuracy by dif-
ferent models, and no single model deliv-
ers the best simulation for all variables 
and/or all regions (Lambert and Boer, 
2001; Gleckler et al., 2008). Furthermore, 
in climate change impact assessment stud-
ies, due to the influence of different 
sources of uncertainty on the output of the 
predicting system, projections do not have 
sufficient confidence. Therefore, it is rec-
ommended that for quantifying the range 
of uncertainty in the projections, the max-
imum number of available GCM models 
be used in simulations (Jones, 2000; 
Wilby and Harris, 2006). Lambert and 
Boer (2001) and Gleckler et al. (2008) 
showed that the multi-model mean of an 
ensemble simulation yields a closer esti-
mate of reality. Giorgi and Mearns (2002) 
defined two “reliability criteria” for eval-
uating the performance of GCMs in simu-
lations: the ‘model performance’ criterion, 
which means how well the models can 
simulate the baseline (present) climate, 
and the ‘model convergence’ criterion, 
which investigates the convergence be-
tween the simulations of future climate 
across the models. By considering both 
these criteria, they investigated the accu-
racy of the models in simulating the mean 
seasonal changes of temperature and pre-
cipitation simulated by 9 GCMs over 22 
regions of the world. They assigned 
weights to the calculated means of each 
GCM and calculated the weighted mean of 
the variables among the GCMs projec-
tions. However, Christensen et al. (2010) 
showed that averaging the weighted simu-
lations in a multi-model projection is not 
superior to an unweighted mean, and 
weighting the models incorporates a level 
of uncertainty to ensemble-based climate 
simulations.  
 

2.4.1    Performance of GCMs in simu-
lating mean climate  
To investigate which GCM can generate 
closer simulations for the study region 
(performance criterion in GCMs), the 
Mean Observation Temperature Precipita-
tion (MOTP) method was used to assign 
weights to each GCM based on the devia-
tion of its baseline simulated mean tem-
perature (or precipitation) from its mean 
observation values using the Eq. 1 (Gohari 
et al., 2013)  

𝑊௜௝ =

భ

೩೔ೕ

∑೙ೕసభ
భ

೩೔ೕ

                                     (1) 

where Wij is the weight of the GCM j in 
month i, n is the number of total GCMs, 

and ∆ij is the difference between the simu-
lated mean temperature or precipitation 
and its corresponding observed value by 
GCM j in a month i in the baseline period. 
The GCM simulations over the study re-
gion for the observation period were ob-
tained from the Canadian climate change 
database (http://www.cccsn.ec.gc.ca), and 
then the monthly means were calculated 
for each GCM in the baseline period. 
 
2.4.2   Range of uncertainty in 
 projections 
In the present study, to investigate the con-
vergence criterion, simulations of precipi-
tation, minimum temperature, maximum 
temperature, and solar radiation by 15 
GCMs are illustrated in box plots. In this 
method, all the simulations conducted by 
the 15 GCMs for the study region in each 
month are illustrated in a single figureure. 
Therefore, it enables the reader to easily 
compare the present range of uncertainty 
and its change over the different periods in 
the simulations. In figures 2-5, the bottom 
and top borders of each box demonstrate 
the first and third quartile of the simula-
tions, and the bottom and top lines out of 
the boxes demonstrate the minimum and 
the maximum of the projections, respec-
tively. The middle line on the boxes also 
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demonstrates the median of the simula-
tions. Moreover, the unweighted means of 
the simulations of the 15 GCMs are illus-
trated on each box. It is noteworthy that 
the box plot does not illustrate a certain 
range of changes in simulations but shows 
the range of uncertainty from the perspec-
tive of the employed GCMs in the simula-
tions. 
 
3    Results and discussion 
3.1   Validation of LARS-WG 
Comparison of monthly means and stand-
ard deviations of the simulated and ob-
served variables at the Dushan Tappeh 
station for the baseline period (1972-
2009) is illustrated in Figure. 1. As the fig-
ureure shows, in March and December, 
LARS-WG has the highest error in simu-
lating the monthly means of precipitation, 
which is about 6.5 mm wet bias. In simu-
lating the monthly means of minimum and 
maximum temperature, the difference is 
negligible. The greatest difference in sim-
ulating the mean minimum temperature is 
in November, which is about 0.4 °C lower 
than the observations, and the maximum 
temperature is in October and December, 
which is about 0.4 °C. In simulating the 
radiation, the greatest difference is in No-
vember and about 0.4 Mj/m2.day lower 
than the observations. 
    Moreover, the generated monthly 
means were compared with their corre-
sponding observations in the baseline pe-
riod by the t-test. For every month, the test 
results were evaluated at the 0.05 confi-
dence level. The test statistics and p-val-
ues for each variable in each month are 
given in table 2. The test results show that 
the simulated monthly means of all varia-
bles in all months are similar to their cor-
responding observations. Except for the 
monthly simulated radiation in November, 
simulations of all the four climate varia-
bles in all months are acceptable at the 
0.05 confidence level. 
  
3.2    Climate scenarios 

Box plot was used to illustrate and analyze 
the range of uncertainty in the large-scale 
climate change scenarios projected by 15 
GCMs for the study region. For plotting 
each box, projections of the 15 GCMs for 
each climate variable in each period were 
used. Moreover, to compare the changes 
in each period, the unweighted means of 
the 15 projections in each month are illus-
trated with bars on each box. In addition, 
to compare the future changes with the 
baseline period, diagrams of the long-term 
monthly means of each variable in the 
baseline period are shown on the boxes. 
Figures. 2 and 3 illustrate the projected ab-
solute changes in the minimum and maxi-
mum temperature in projecting the tem-
perature in the summers than in other sea-
sons. The convergence in the projections 
will also reduce in the long term in all 
months of the year.  
     The mean absolute temperature in-
crease under the A1B emission scenario is 
projected to be about 0.8 °C, 2.4 °C, and 
3.8 °C in the summers, and about 0.5 °C, 
1.5 °C, and 2.3 °C in the winters for the 
three periods, respectively. Figures. 4 and 
5 illustrate the relative changes in the pre-
cipitation and solar radiation in percent, 
projected by 15 GCMs for the three future 
periods relative to their baseline period for 
each month of the year, respectively. The 
figures show that the changes in the two 
variables have almost a reverse patternso 
that the models project decreased precipi-
tation and increased solar radiation for the 
springs but increased precipitation and de-
creased radiation for the falls. The de-
crease in precipitation in the springs may 
be due to the reduced cloudiness and in-
creased radiation in the season, which this 
trend will be reversed in the falls. Moreo-
ver, the projections state that the relative 
reduction in the precipitation reaches its 
peak in summers (June, July, and August), 
but because the precipitation and the 
cloudiness in this season are less than in 
other seasons, no great changes in the 
amount of received radiation are projected 



Multi-Model weighting approach for future projections of solar …                                                                                   25 

for the summers. 
    Furthermore, the models project the 
least convergence and the most uncer-
tainty in relative changes in the precipita-
tion for the summers and as a reduction in 
precipitation. However, due to the small 
amount of precipitation in this season, this 
reduction will not have a great effect on 
the amount of precipitation received by 
the Earth’s surface. This reduction will be 
more pronounced in the winters, which 
have a high amount of precipitation. It is 
projected that, relative to the baseline pe-

riod, the winter precipitation will be re-
duced on average by about 2%, 8%, and 
15% from the first to the third period, re-
spectively. In terms of solar radiation, the 
models show the highest uncertainty in the 
projected relative changes in radiation for 
the springs and then falls, and as an in-
crease and a decrease in the radiation, re-
spectively. It is projected that, relative to 
the baseline period, the spring radiation 
will be increased on average about 0.5%, 
1.5%, and 3% from the first to the third 
period, respectively.  

 
Figure 1. Comparison of monthly means and standard deviations of the simulated and observed variables at 
the Dushan Tappeh station in the baseline period (1972-2009) for (a) precipitation (mm), (b) radiation 
(Mj/m2.day), (c) minimum temperature (°C), and (d) maximum temperature (°C). 
 
 
3.3    Downscaling GCM outputs 
Projections of the 15 GCMs were 
downscaled for the study region and  
local-scale daily climate scenarios of the 
variables were obtained for each period. 

For investigating the convergence across 
the projections after the downscaling, all 
downscaled daily values of each variable 
in each month are gathered in one box. To 
compare the range of uncertainty entered 
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to the projections after the downscaling, 
the changes in large-scale climate scenar-
ios are also illustrated in Figure. 6. Figure. 
6 shows this comparison for the maximum 
temperature. The small boxes on the left in 
each month are formed by adding the 
 projected absolute temperature increase 
to the long-term observed monthly means 
of the baseline maximum temperature. 
    The boxes on the right for each month 
show the range of the downscaled daily 
maximum temperature obtained from all 
downscaled daily values from LARS-WG 
for each month in each period. The  
baseline long-term monthly means of the 

maximum temperature are also illustrated 
under the boxes. Figure. 6 shows that the 
changes in both diagrams follow the same 
trend. All diagrams show the temperature 
rise relative to the long-term baseline 
means, and this increase has grown by the 
end of the 21st century. However, a notice-
able difference exists between the ranges 
of changes in the maximum temperature in 
the 2 sets of changes in both diagrams fol-
low the same trend. All diagrams show the 
temperature rise relative to the long-term 
baseline means, and this increase has 
grown by the end of the 21st century.  

 
Table 2. Statistical tests and their p-values from LARS-WG 

 
Month Precipitation  Minimum temperature 

 
 Maximum temperature 

 
 Solar radiation 

 
  K-S p-

Value 
t p-

Value 
  K-S p-

Value 
t p-

Value 
  K-S p-

Value 
t p-

Value 
  K-S p-

Value 
t p-

Value 
Jan 0.058 1 -0.87 0.385   0.106 0.9989 0.147 0.883   0.106 0.9989 0.697 0.488   0.044 1 0.363 0.718 

Feb 0.04 1 0.234 0.816   0.053 1 -0.08 0.936   0.105 0.9991 0.63 0.531   0.087 1 -0.18 0.851 

Mar 0.136 0.9743 1.124 0.264   0.053 1 -0.56 0.573   0.053 1 -0.76 0.45   0.087 1 0.016 0.987 

Apr 0.069 1 -0.03 0.971   0.106 0.9989 -0.25 0.801   0.053 1 -0.41 0.678   0.044 1 0.079 0.937 

May 0.084 1 1.196 0.235   0.053 1 -0.90 0.366   0.053 1 -1.05 0.297   0.087 1 -0.56 0.572 

Jun 0.131 0.9824 0.333 0.74   0.106 0.9989 0.761 0.449   0.106 0.9989 0.977 0.331   0.044 1 -0.02 0.978 

Jul 0.117 0.9954 -0.18 0.857   0.105 0.9991 -0.67 0.503   0.105 0.9991 0.601 0.549   0.044 1 -0.59 0.552 

Aug 0.305 0.1932 0.255 0.799   0.106 0.9989 0.414 0.68   0.106 0.9989 1.032 0.305   0.131 0.9824 0.547 0.586 

Sep 0.29 0.2415 -0.47 0.638   0.053 1 -1.18 0.238   0.053 1 -0.81 0.419   0.087 1 0.778 0.439 

Oct 0.057 1 -0.95 0.342   0.105 0.9991 0.858 0.393   0.106 0.9989 1.509 0.135   0.044 1 -0.55 0.584 

Nov 0.088 1 -0.97 0.331   0.053 1 -1.51 0.134   0.053 1 -0.89 0.375   0.044 1 -1.99 0.05 

Dec 0.042 1 1.412 0.162   0.105 0.9991 -0.4 0.69   0.053 1 -1.02 0.307   0.131 0.9824 -0.71 0.477 

 

 
Figure 2. Projected absolute changes in the minimum surface temperature (°C) relative to the baseline period 
(1972-2009) at the Dushan Tappeh station for the three periods: (a) 2011-2030, (b) 2046-2065, and (c) 2080-
2099. 
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Figure 3. Projected absolute changes in the maximum surface temperature (°C) relative to the baseline period 
(1972-2009) at the Dushan Tappeh station for the three periods: (a) 2011-2030, (b) 2046-2065, and (c) 2080-
2099. 

 
Figure 4. Projected relative changes in precipitation relative to the baseline period (1972-2009) at the Dushan 
Tappeh station for the three periods: (a) 2011-2030, (b) 2046-2065, and (c) 2080-2099. 
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Figure 5. Projected relative changes in solar radiation relative to the baseline period (1972-2009) at the Dushan 
Tappeh station for the three periods: (a) 2011-2030, (b) 2046-2065, and (c) 2080-2099. 
 
 
 

 
Figure 6. Comparison of convergence between daily values (downscaled by LARS-WG, large boxes) and 
large-scale climate scenarios (GCM outputs, small boxes) for the maximum temperature at the Dushan Tappeh 
station for the three periods: (a) 2011-2030, (b) 2046-2065, and (c) 2080-2099.  
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Figure 7. Projections of the mean decadal changes of (a) minimum temperature, (b) maximum temperature, 
(c) solar radiation, and (d) precipitation under the influence of climate change for the Dushan Tappeh station. 
 
However, a noticeable difference exists 
between the ranges of changes in the max-
imum temperature in the 2 sets of dia-
grams in each period. The downscaled 
values have a wider range compared to the 
large-scale projections. This increase in 
the range can result from the increase in 
climate fluctuations due to downscaling 
the variables from the grid scale to the lo-
cal scale (study station). Furthermore, a 
comparison of the three periods ((a) 2011-
2030, (b) 2046-2065, and (c) 2080-2099) 
in Figure. 6 shows that the convergence in 
the projected large-scale climate scenarios 
(small boxes) in the summers is less than 
in other seasons, but after the downscal-
ing, the convergence in the projections in 
the summers is more than other seasons. 
 
3.4   Mean decadal changes of the cli-
mate variables for the Dushan Tappeh 
station 
Changes in the climate variables in the fu-
ture decades under the influence of cli-
mate change were also investigated from 
the mean decadal perspective. For each 
GCM, the decadal means of radiation, 
minimum and maximum temperature 
were obtained from averaging the 
downscaled daily values of each variable 

in each decade. For calculating the deca-
dal mean of precipitation projected by 
each GCM, initially, monthly total precip-
itation was calculated from daily values 
and then the mean monthly total precipita-
tion was calculated for each decade. Each 
box in Figure. 7 illustrates the projections 
of the 15 GCMs compared to the baseline 
long-term means of each variable. The en-
semble projections indicate that the deca-
dal changes of radiation, minimum, and 
maximum temperature will have an in-
creasing trend, while the decadal changes 
of precipitation will have a decreasing 
trend in the coming decades. Decadal 
changes of the minimum and maximum 
temperature show a more distinct trend in 
comparison with the decadal changes of 
precipitation and radiation, and all GCMs 
unanimously project a noticeable growth 
in decadal changes of temperature. The 
figureure indicates that the convergence in 
the projections reduces in the long term in 
all variables. Furthermore, the models 
project a reverse pattern for changes in ra-
diation and precipitation in the future dec-
ades. The ensemble projections indicate 
that in the long term, precipitation will de-
crease, and in contrast, the radiation will 
increase in the study region. 
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3.5    Weighting of the models  
Studies indicate that the skills of GCMs in 
simulating all climate variables are not 
similar, and the accuracy of GCMs projec-
tions is different for different variables 
and/or regions (Gleckler et al., 2008). 
Therefore, the weighting of the projec-
tions by 15 GCMs for the study region was 
conducted by the MOTP method to inves-
tigate which GCM demonstrates better 
performance in simulating the baseline 
climate. Table 3 shows that weighting the 
simulated monthly means of the variables 
do not show a distinct pattern, but it seems 
that in simulating the maximum tempera-
ture, MIHR, and CSMK3 show a better 
performance in the warm and cold 
months, respectively. In simulating the 

minimum temperature, CSMK3, 
FGOALS, and IPCM4 perform better in 
the simulations in the first four months, 
second 4 months, and the last four months 
of the year, respectively. 
    In simulating the daily mean tempera-
ture, no distinct pattern can be seen among 
the simulations, and only the CSMK3 
shows a better performance in simulating 
the daily mean temperature for the first 4 
months of the year. In simulating the pre-
cipitation, similar to the daily mean tem-
perature, no distinct pattern can be seen 
among the models, although it seems that 
NCCCSM shows a better performance in 
simulating the precipitation in some 
months for the study region. 

 
Table 3. Relative weights of the GCMs in simulating the monthly means of the variables: (a) daily maximum 
temperature (°C), (b) daily minimum temperature (°C), (c) daily mean temperature (°C), and (d) daily precip-
itation (mm/day). 
(a) 
Month BCM2 CGMR CNCM3 CSMK.3 FGOALS GFCM21 GIAOM HADCM3 HADGEM INCM3 IPCM4 MIHR MPEH5 NCCCSM NCPCM 

Jan 0.02 0.05 0.03 0.23 0.03 0.33 0.09   0.11 0.07 0.04    

Feb 0.02 0.04 0.03 0.49 0.03 0.15 0.06   0.1 0.05 0.04    

Mar 0.02 0.05 0.04 0.57 0.04 0.08 0.04   0.08 0.04 0.05    

Apr 0.05 0.11 0.1 0.15 0.09 0.11 0.06   0.12 0.08 0.14    

May 0.03 0.12 0.06 0.08 0.07 0.07 0.03   0.06 0.04 0.43    

Jun 0.04 0.11 0.07 0.09 0.13 0.15 0.06   0.07 0.06 0.23    

Jul 0.04 0.04 0.11 0.06 0.15 0.34 0.06   0.05 0.04 0.12    

Aug 0.04 0.05 0.07 0.05 0.08 0.25 0.06   0.05 0.05 0.29    

Sep 0.04 0.15 0.07 0.05 0.06 0.15 0.07   0.06 0.06 0.29    

Oct 0.01 0.64 0.02 0.02 0.02 0.03 0.02   0.02 0.02 0.19    

Nov 0.05 0.11 0.07 0.11 0.06 0.11 0.09   0.09 0.18 0.12    

Dec 0.04 0.07 0.05 0.14 0.05 0.16 0.1   0.09 0.25 0.07    

 
(b) 
Month BCM2 CGMR CNCM3 CSMK.3 FGOALS GFCM21 GIAOM HADCM3 HADGEM INCM3 IPCM4 MIHR MPEH5 NCCCSM NCPCM 

Jan 0.02 0.02 0.03 0.53 0.02 0.05 0.09   0.03 0.19 0.03    

Feb 0.02 0.03 0.04 0.48 0.03 0.06 0.09   0.03 0.18 0.04    

Mar 0.05 0.06 0.07 0.28 0.07 0.09 0.11   0.06 0.14 0.07    

Apr 0.07 0.07 0.08 0.17 0.14 0.1 0.1   0.06 0.13 0.08    

May 0.07 0.07 0.09 0.14 0.17 0.09 0.09   0.06 0.13 0.09    

Jun 0.07 0.07 0.08 0.1 0.27 0.07 0.08   0.05 0.13 0.08    

Jul 0.06 0.07 0.07 0.07 0.38 0.06 0.07   0.04 0.12 0.07    

Aug 0.07 0.08 0.08 0.09 0.22 0.07 0.09   0.05 0.16 0.09    

Sep 0.07 0.08 0.09 0.09 0.15 0.08 0.1   0.05 0.21 0.09    

Oct 0.07 0.07 0.08 0.1 0.12 0.08 0.09   0.05 0.24 0.1    

Nov 0.05 0.05 0.05 0.09 0.06 0.06 0.07   0.04 0.48 0.06    

Dec 0.05 0.04 0.05 0.21 0.05 0.07 0.09   0.04 0.33 0.06    
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(c) 
Month BCM2 CGMR CNCM3 CSMK.3 FGOALS GFCM21 GIAOM HADCM3 HADGEM INCM3 IPCM4 MIHR MPEH5 NCCCSM NCPCM 

Jan 0.02 0.03 0.02 0.4 0.02 0.08 0.07 0.03 0.03 0.04 0.12 0.03 0.04 0.04 0.02 

Feb 0.02 0.03 0.03 0.44 0.03 0.08 0.07 0.03 0.03 0.05 0.07 0.04 0.04 0.03 0.02 

Mar 0.03 0.05 0.05 0.31 0.05 0.08 0.06 0.04 0.04 0.06 0.07 0.06 0.04 0.04 0.03 

Apr 0.05 0.07 0.07 0.13 0.09 0.08 0.06 0.04 0.04 0.06 0.09 0.08 0.05 0.04 0.04 

May 0.05 0.08 0.08 0.11 0.12 0.08 0.06 0.04 0.03 0.06 0.08 0.13 0.04 0.04 0.03 

Jun 0.05 0.15 0.06 0.08 0.16 0.07 0.06 0.03 0.02 0.04 0.07 0.12 0.03 0.03 0.02 

Jul 0.04 0.3 0.05 0.05 0.19 0.06 0.05 0.02 0.02 0.03 0.05 0.11 0.02 0.02 0.02 

Aug 0.05 0.21 0.07 0.06 0.13 0.07 0.07 0.02 0.02 0.04 0.08 0.12 0.03 0.03 0.02 

Sep 0.06 0.14 0.07 0.06 0.1 0.08 0.08 0.03 0.03 0.05 0.11 0.1 0.03 0.03 0.03 

Oct 0.05 0.1 0.06 0.08 0.07 0.08 0.07 0.04 0.04 0.05 0.12 0.13 0.04 0.04 0.03 

Nov 0.05 0.06 0.05 0.09 0.05 0.07 0.07 0.04 0.05 0.05 0.22 0.08 0.05 0.05 0.03 

Dec 0.02 0.02 0.02 0.08 0.02 0.05 0.04 0.02 0.03 0.03 0.56 0.03 0.03 0.03 0.02 

 
(d) 
Month BCM2 CGMR CNCM3 CSMK.3 FGOALS GFCM21 GIAOM HADCM3 HADGEM INCM3 IPCM4 MIHR MPEH5 NCCCSM NCPCM 

Jan 0.07 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.08 0.01 0.19 0.04 0.01 0.48 0.01 

Feb 0.01 0.04 0.74 0.01 0.03 0.03 0.0 1 0.01 0.01 0.01 0.03 0.03 0.01 0.02 0.01 

Mar 0.01 0.15 0.01 0.02 0.13 0.09 0.0 1 0.03 0.02 0.02 0.06 0.07 0.03 0.33 0.01 

Apr 0 0.01 0 0.02 0.01 0.01 0 0.05 0 0.22 0.06 0.08 0.26 0.22 0.04 

May 0 0.01 0.01 0.03 0.02 0.14 0.0 1 0.06 0.01 0.02 0.19 0.11 0.06 0.17 0.17 

Jun 0 0.02 0 0.1 0.01 0.07 0.02 0.08 0.02 0.01 0.05 0.09 0.01 0.14 0.39 

Jul 0.01 0.18 0.01 0.04 0.14 0.03 0.07 0.14 0.01 0.01 0.05 0.04 0.01 0.19 0.05 

Aug 0.01 0.44 0 0.04 0.09 0.05 0.05 0.13 0 0.01 0.05 0.05 0.01 0.02 0.07 

Sep 0.01 0.04 0 0.01 0.03 0.47 0.0 1 0.02 0 0.01 0.04 0.09 0.01 0.01 0.23 

Oct 0.02 0.17 0.01 0.04 0.1 0.13 0.0 1 0.09 0.01 0.07 0.05 0.15 0.03 0.04 0.08 

Nov 0 0.02 0.02 0.07 0.09 0.22 0.02 0.05 0.02 0.16 0.16 0.07 0.04 0.03 0.03 

Dec 0.08 0.04 0.03 0.03 0.04 0.03 0.07 0.02 0.08 0.03 0.06 0.07 0.03 0.38 0.02 

 
 

4    Conclusion  
In the present study, the uncertainty of 15 
GCMs in projecting the changes in tem-
perature, precipitation, and radiation for 
the present century under the influence of 
climate change was investigated in Tehran 
province. All models unanimously project 
an increase in temperature in all months, 
and this increase is projected with more 
uncertainty for the summer seasons. The 
projections indicate a reverse pattern for 
the precipitation and radiation, showing a 
reduction in precipitation and an increase 
in the radiation are projected for the 
springs. Projections show that this pattern 
will reverse for the falls. Moreover, the 
convergence of the ensemble projections 
for precipitation in the summers, and the 
radiation in the springs and falls are less 
than other seasons for the study region. 
The uncertainty in the projections of the 

variables also grows in the long term (by 
the end of the 21st century), which indi-
cates the weakness of the GCMs in long-
term climate projections. Furthermore, de-
cadal changes in the variables indicate that 
temperature and radiation will increase, 
precipitation will decrease in the long 
term, and these changes are more pro-
nounced for the temperature. 
    The projected changes in the climatic 
variables can influence the future urban 
environment of the study region. The pro-
jections indicate that Tehran will experi-
ence hotter summers in the future. This, 
together with the increased sunshine in the 
springs and summers, can influence tem-
perature-related phenomena such as pho-
tochemical pollution and may degrade the 
future summertime air quality in the study 
region. Moreover, the projected reduction 
in winter and spring precipitation, which 
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has the most precipitation among other 
seasons, may influence the local water re-
sources and lead to water shortage in the 
study region. Therefore, the consequence 
of the projected changes in the future cli-
mate of the study region, which is consid-
ered as the first step among the steps of 
climate change impact assessment, can be 
investigated in other environmental as-
pects such as air quality and water re-
sources in the study region to evaluate the 
scope of the impact of these changes on 
other resources and to devise a mitigation 
and adaptation strategy for the future dec-
ades. Therefore, future work should bene-
fit greatly from techniques such as using 
dynamical-regional downscaling tech-
niques, employing more local stations, 
and employing impact assessment models.  
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