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Abstract 
The ill-posed problems could be seen anywhere in our daily lives. An ill-posed problem is a 
problem that there are no uniqueness solutions (there is no solution or two or more solutions 
for the problem) or the solutions are unstable; i.e., an arbitrarily small error in the observation 
may lead to extremely large errors in the solutions. The main difficulty in solving ill-posed 
problems is instability of their solutions with respect to small variations of input data. A 
regularized estimation of an ill-posed problem is always biased; thus, it's worth obtaining 
the solution from different methods for reliable evaluation of the uncertainty in our  
estimation. The regularization methods, such as Tikhonov's method, are used to obtain stable 
solutions for solving ill-posed problems. In Tikhonov's regularization method, a scalar  
quantity is used as the stabilization parameter to solve ill-posed problems; whereas, In the 
Optimally Scaled Vector Regularization Method (OSVRM), a vector is used as the  
stabilization parameter. In this paper, a comparison has been made between the results of 
Tikhonov, TSVD, and OSVRM methods in terms of accuracy of the results for estimation 
of the earth gravity field from GOCE satellite data. The RMSE of the results of Tikhonov, 
EGM96 model, and the OSVRM method – that use a vector instead of scalar as  
regularization parameter – in the order of 10-5, 10-9, and 10-13, respectively. It is seen that 
the results obtained from the OSVRM method are much better compared to the Tikhonov 
method and EGM96 model for solving linear ill-posed problems. On the other hand, a  
significant improvement has been achieved in the stability and accuracy of numerical results 
for linear problems solution.  
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1    Introduction 
According to Hadamard (1923), a problem 
is well-posed, if the following three con-
ditions are met: 
The question has an answer (existence of 
at least one solution for the problem). 
The answer should be unique (single an-
swer). 
The solution changes continuously with 
changes in the data (Continuity). 
The answer is a continuous function of the 
observations; In other words, small fluctu-
ations in observations do not cause large 
fluctuations in the results (response stabil-
ity). 
    The problem is said to be ill-posed, if at 
least one of the above conditions is not 
met. Therefore, we have to use regulariza-
tion methods to solve the problem using 
basic information. 
Suppose X and Y are the Normed spaces 
and the problem below is ill-posed: 
V x = y,        V: X𝑌                             (1) 
In classic numerical methods, the problem 
will be diverge, if the model was ill-posed. 
In other words, classical numerical meth-
ods such as Chulsky decomposition, LU 
decomposition, and QR decomposition do 
not have the ability to estimate a meaning-
ful solution for Equation (1) in the discrete 
space; But by using different regulariza-
tion methods, a stable answer can be ob-
tained for the system of equations (Han-
sen, 1992). 
    Suppose that the f is the value of func-
tion f by the approximation , such that 
‖f − fஔ‖ ≤ δ. We are looking for an ap-
proximate answer to equation (1) from Q:  
Qఋ = {𝑥 ∈ 𝑋: ‖𝑉𝑥 − 𝑓ఋ‖ ≤ 𝛿}             (2) 
However, in the ill-posed problems, an ar-
bitrary element xQ cannot be consid-
ered as an approximate answer to equation 
(1). Since x is not continuously depend-
ent on f, the expression ‖Vx − fஔ‖ ≤ δ 
does not guarantee that x is close to the 
desired solution for the system of equa-
tions. Therefore, in this case, we will have 
to use a priori information (known proper-
ties of the solution) to solve the problem 

and reach a stable solution. Using prior in-
formation to stabilize the answer is called 
the Tikhonov regularization method. In 
the case of a system of nonlinear equa-
tions, iterative methods can be used to ar-
rive at a stable solution.  
    Basically, regularization methods find a 
unique stable solution for the problem by 
considering certain hypotheses and a 
known scalar parameter (the regulariza-
tion parameter). Then, instead of finding 
the solution from the whole answer space, 
it must be focused on determining the reg-
ularization parameter. Therefore, in any 
regularization method, a unique solution 
for the ill-posed problem is not found di-
rectly, but a set of solutions is provided 
and it is expected that the real solution of 
the problem is a member of this set. Then, 
a unique solution would be selected from 
the set of answers by considering some 
specific hypotheses. Therefore, the discus-
sion about regularization parameter is of 
special importance in regularization meth-
ods. 
1    Tikhonov stabilization method 
Consider the following linear equation 
system: 
𝑉𝑥 = 𝑏ଵ    ,      𝑉 ∈ 𝑅௡×௡   ,      𝑥 , 𝑦 ∈ 𝑅௡         (3) 
Matrix V is extremely ill-conditioned and 
has large single values. Such a system of 
linear equations is commonly referred to 
as ill-posed linear problems. An example 
of these equations is the Fredholm integral 
equations of the first type with a smooth 
kernel. Since the data values of matrix b 
were obtained through different observa-
tions, they were usually contaminated 
with a variety of measurement errors. In 
addition, they also sometimes have dis-
cretization errors. We represent the sum of 
these errors with e  Rn. 
   Suppose b ∈ R୬ is the real and unknown 
value corresponding to b1: 
𝑏ଵ = 𝑏 + 𝑒                                            (4) 
Now consider the system of linear equa-
tions (3) with the unknown quantity of b: 
𝑉𝑥 = 𝑏                                                  (5) 
Suppose that xො has a solution for Equation 
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(5) (for example, the answer obtained by 
minimizing Euclidean norm). We want to 
obtain an approximation of xො by calculat-
ing the approximate answer of the system 
of linear equations (3). Since the matrix, V 
is a bad-conditioned matrix and also, due 
to the error e on the right side of the equa-
tion (4), the direct solution of equation (3) 
does not give a meaningful solution for xො. 
In order to determine a meaningful ap-
proximation of xො, the system of linear 
equations (3) is replaced by another sys-
tem that is close to the original system, 
but, less sensitive to data perturbations on 
the right. The solution of the new system 
is approximately assumed to be the value 
of xො. This replacement is usually inter-
preted as regularization. 
    There are several ways for stabilizing 
the problem. One of the most common sta-
bilization methods is the Tikhonov Regu-
larization Method. In this method, the sys-
tem of linear equations (3) is replaced by 
the following minimization problem: 

  ቄ‖𝑉𝑥 − 𝑦‖ଶ +  
ଵ

ఓ
 ‖𝑥‖ଶቅ௫∈ோ೙

௠௜௡              (6) 

In other words, in Tikhonov's Regulariza-
tion method, in addition, to minimizing 
the norm of residuals, the solution norm 
‖x‖ is also minimized. In the above phrase, 
𝜇 > 0 is called the regularization parame-
ter. The meaning of ‖. ‖ in phrase (6) is the 
Euclidean norm or ‖. ‖ଶ. The parameter 𝜇 
determines the solution sensitivity of x to 
the error e in the observations; also, how 
close the answer  is to the real answer xො. 

Generally, the Penalty term 
ଵ

ஜ
 ‖x‖ଶ can be 

replaced by the phrase 
ଵ

ஜ
 ‖Lx‖ଶ. L is called 

the operator or regularization matrix. In 
Tikhonov's regularization method, a com-
mon option for matrix L is the identity ma-
trix. 
 
2    Determination of the regularization 
parameter 

Methods for determining the regulariza-
tion parameter are divided into three cate-
gories depending on the available infor-
mation from the error norm (‖e‖ଶ): 
Methods that are only based on a proper 
estimation of the error norm (initial pa-
rameter selection method) 
    Methods that depend on both observa-
tions and errors (secondary parameter se-
lection method) 
    Methods that do not require information 
from the error norm and are based only on 
observations (error-independent method) 
    Since we usually do not have infor-
mation about the error norm, the error-in-
dependent method is used to determine the 
regularization parameter. In this case, 
there are four methods to determine the 
regularization parameter:  
Discrepancy principle (DP) 
Generalized Cross Validation (GCV) 
method 
L-curve method  
The Flattest Slope method 
    For all regularization methods, the prin-
ciple is to balance between the stability of 
the solution and the bias caused by the reg-
ularization parameter. Among the above 
methods, the L-curve method is the most 
suitable graphical tool for analyzing dis-
crete ill-posed problems. The L-curve is a 
plot -for all valid regularization parame-
ters- of the size of the regularized solution 
versus the size of the corresponding resid-
ual (Ardalan et al, 2008). 
As mentioned earlier, the common point 
of Tikhonov and TSVD regularization 
methods is their dependence on the regu-
larization parameter. The regularization 
parameter controls the amount of filtering 
applied by the regularization (Hansen & 
O'Leary, 1993). Therefore, the main point 
of these methods is to find the regulariza-
tion parameter, so we can reach the final 
solution by removing or reduction of the 
noise, without losing any information. In  
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Figure 1.  Optimal regularization parameter  and the balance between bias and variance (Ar-
dalan et al. 2008).  
 
This Content, the L-curve is the most  
suitable graphical criterion for  
determining the regularization parameter 
that can be used in all regularization  
methods. In the L-curve method, the size 
of the norm of the stable solution (‖x‖) is 
plotted against the corresponding norm of 

residuals (‖Ax − b‖). In this method, the 
interpretation of the size depends on the 
application stabilization method. For  
example, L2 norm is suitable for the 
Tikhonov method, while norm L1 is  
suitable for the TSVD regularization 
method.

 

 
Figure 2 . L-Curve [14]. 

 
Table 1 . Types of regularization methods and their  characteristics (Hansen & O'Leary  , 

1993; Hansen, 1992). 
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3    Truncated Singular Value Decom-
position (TSVD) 
This method is an extension of decompos-
ing the eigenvalues of square operators, 
with the difference that in this method 
each matrix with any dimension can be 
multiplied by three matrices, one of which 
is diagonal and two other matrices are or-
thogonal or invertible.  
    In practical methods for solving the dis-
crete problem in the form 𝐴𝑥 = 𝑦 the ef-
fect of noise e must be minimized. Differ-
ent regularization methods differ only in 
the way that they determine the noise-fil-
tering function. 
    Matrix A can be decomposed by single 
value analysis (SVD) as follows: 
𝐴 = 𝑈∑𝑉ଶ                                                                    (7) 
Where, Um  m = [u1 . . . um]  and 
Vn  n = [v1 . . . vn] are orthogonal matri-
ces. 
    In this relation, U and V are the left and 
right single vectors of matrix A that are or-
thonormal, respectively. 
    In general, the dimension of matrix U is 
m×m, whose columns are orthonormal ei-
genvectors of 𝑈𝑈். Also, the columns of 
the matrix Vn×n are obtained from the or-
thonormal eigenvectors of 𝑉்𝑉 matrix. 
The matrix m×n is a matrix whose diago-
nal elements are non-zero singular values 
of the 𝑉𝑉் or 𝑉்𝑉 matrix. 
    To find the least squares solution of 
equation (3), it is used the single values 
decomposition of the matrix V by mini-
mizing the following expression: 

2  n
min

x R
Vx y


                                   (8) 

The solution is: 

1

  
n

i
LSQ i

i i

x
 


                                  

(9) 
Where: α୧ = u୧

୘y. 
    The problem with using the least 
squares solution of x୐ୗ୕ is that the error 
will increase significantly in directions 
corresponding to the small singular val-
ues. Then, the information in directions 

corresponding to the larger singular values 
would be corrupted. Therefore, any prac-
tical method must involve the filter coeffi-
cients fi in the estimation. The filtered so-
lution is: 

  
1

   
n

i
filtered i i

i i

x f
 


                          (10) 

Filter coefficients are usually assumed to 
be  0 ≤ f୧ ≤ 1. If all filter coefficients are 
selected as units, the answer will be equal 
to the solution of the least squares method. 
Different Regularization methods differ 
only in how the filter coefficients are se-
lected. For example, in the Tikhonov 
method with the regularization parameter 
μ, the filter coefficients are: 

2

2 2
 i

i
i

f


 



                                     (11) 

The answer obtained from the TSVD 
method is: 

1

 
Tk

i
k i

i i

u
x v

b



                              (12) 

In the generalized TGSVD method, the 
answer is as follows: 

,
1 1

) (
Tp n

Ti
k L i i i

i p k i pi

u
x v

b
b xu

    

            (13) 

Table 1 lists the various regularization 
methods and the characteristics of each of 
them. 
    In general, if ρ(μ) would be the func-
tion that is minimized by the regulariza-
tion method and the η(μ), the function 
corresponding to the stabilized solution x, 
then we can say the selection of regulari-
zation method is equal to the selection of 
a suitable pair of functions  and . For 
example, in Tikhonov's method we have: 
 
   2 2ρ       ,         V x y V x            (14) 

Also, the L-curve is a logarithmic graph of 
the values of the function η(μ) versus 
ρ(μ)  to determine the optimal regulariza-
tion parameter. In this case, the value of 
the regularization parameter is a point of 
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the diagram that has the maximum curva-
ture. 
4    OSVRM method: 
We want to solve the system of ill-posed 
linear equations: 
𝑉𝑥 = 𝑦                                                (15) 
In scientific problems, the accurate values 
of observations matrix y are seldom 
known; it's always accompanied by noise 
due to measurement error. Therefore, the 
solutions obtained by solving the problem 
at the ill-posed conditions may deviate 
greatly from the real answer. To avoid 
such a situation, the regularization meth-
ods are used and two common methods in 
this field, i.e. Tikhonov method and 
TSVD method were described in detail in 
previous sections. To solve the system of 
equations (1), two methods of Conjugate 
Gradient and  Relaxed Steepest Descent 
Method (RSDM) are described, and then, 
the optimized OSVRM method is ex-
plained (Liu, 2012). 
 
5-1   Conjugate Gradient and RSDM 
Methods 
If we multiply equation (1) by 𝑉் , we 
have: 
𝑉்𝑉𝑥 = 𝑉்𝑦                                      (16) 
Assuming 𝐶 = 𝑉்𝑉 and 𝑉்𝑦 = 𝑏, we can 
rewrite the equation (16) as C = xb. For 
the iterative conjugate gradient method, 
the steps to solve the equation are summa-
rized below. 
1- With the known initial value x0, the val-
ues r0 and p1 are calculated:  

0 0 1 0 –           ,         r b C x p r   

 
2- The iterative steps are performed for 
k 1,  2,  ... , as follows: 

2

1

1

2

2

1

1

,

,

,

,

.

k
k T

k k

k k k k

k k

k
k

k

k k k k



















 
 



 

r

p Cp

x x p

r b Cx

r

r

p r p

 

This iteration is continued until: ‖r୩‖  < ε 
The steps of performing RSDM calcula-
tions (Liu, 2011) are presented to compare 
with the conjugate gradient method: 
With the initial known value of 0x , the 

following steps are repeated for 
k 1,  2,  ... .  

 

2

1

,

(1 ) ,

k k

k
k k kT

k k



 

  

r Cx b

r
x x r

r Cr

 

The iteration is continued until: ‖r୩ାଵ‖ <
 ε. The parameter  is a constant quantity: 
0 ≤ γ < 1. 
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


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



















 

  



 
 



 



r

r Cx b

r
x x r

r Cr

r

p Cp

x x p

r b Cx

r

r

p r p

r

x

 

 
4    OSVRM: A vector regularization 
method for solving ill-posed linear 
problem 
Consider the matrix equation 𝑉𝑈 = 𝐼௡ ; In 
other words: 𝑈 = 𝑉 − 1. Since V is 
known based on Equation (1), so 𝑉் is 
also known and we have 𝑥଴ as the initial 
input vector: 

0
0

Ty V x  

then: 
0

0 ( )T Ty x V 
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Multiplying the equation by 𝑈 and consid-
ering 𝑉𝑈 = 𝐼௡, we have:  

0
0 ( )T Ty U x  

The above two equations form a system of 
over-determined linear equations to solve 
U, as follows: 

0
0

,       :
( )

n
TT

  
    
   

VI
BU B

yx
 

The dimensions of matrix B are: (𝑛 +
1) × 𝑛. Multiplying the above equation by 
𝑈் gives a matrix equation 𝑛 × 𝑛 to solve 
𝑈: 

0
0 0 0 ( )T T T T    V V y y U V y x        (17)  

Multiplying the above linear operator by 
b1 and assuming that Ub1=x, we have: 

0
0 0 1 0( . )T T    V V y y x b x b y          (18) 

 
It has been mathematically proved that the 
solutions of the above equation are the 
same as the solutions of Equation (1) (Liu 
et al, 2010). Of course, this equation also 
has similarities with Tikhonov's regulari-
zation equation, which is expressed by the 
following equation: 

T
n   V V I x b                               (19)  

  
Tikhonov's regularization method disturbs 
the system of principal equations (1) by 
adding the regularization parameter  to 
the system of equations (19). In other 
words, on the right-hand side of equation 
(19), there is no sentence that compensates 
for the disorder caused by the addition 
sentence of the x. This is why in 
Tikhonov's stabilization method if the reg-
ularization effect is over-emphasized, the 
accuracy of the resulting solutions may be 
greatly impaired. 
    On the other hand, the proposed vector 
regularization method does not disturb the 
system of original linear equations but 
mathematically transforms it into a new 
system of equations using the regulariza-
tion vector 0

0
Ty V x . In other words, in 

this method, an additional sentence 

0
1 0( . )x b y  is added to the right-hand side 

of the equation to compensate for the reg-
ularization sentence 0 0

Ty y x  on the left-

hand side of the equation. Therefore, in 
Equation (18), both the stability and accu-
racy of the results are considered simulta-
neously. 
According to Equation (18) and consider-
ing that 0

0
Ty V x , we have: 

0 0
1( . ) T Ax b x b V x                          (20) 

Where: 

1
Tb V b  

 And 
0 0: ( )T T T A V V V x x V                    (21) 

In the above equations, if we could not se-
lect a suitable value for the regularization 
vector 0x , these equations will still be ill-
conditioned. Therefore, the problem is to 
find the appropriate value of the vector 0x
, so that the condition number of the ma-
trix A is reduced as much as possible. 
Theoretically, matrix A is in equilibrium 
if all its rows or columns have a norm, in 
which case the matrix is best-conditioned. 
According to the equilibrium matrix the-
ory, the vector 0x can be chosen so that in 
equation (20), each row of the matrix of 
coefficients A has a Euclidean norm 

0R  0 : 

2 2 2
1 0

1 1

...
n n

j nj
j j

A A R
 

                        (22) 

0R  is a fixed scalar quantity that can be 

selected with the following equation: 

2
0 max

1,...,
1

: max
n

ik
i n

k

R R C
 

                     (23) 

Where ikC ’s are the components of the 
TC V V  matrix. Based on Equation (21), 

nonlinear algebraic equations (NAEs) can 
be concluded as follows: 

(24) 
2 2 0 0 2 2

0 0
1 1 1 1

( ) 0, 1,...,
n n n n

i nj ki kj ki k m mi
j j k m

F A R V V V x x V R i n
   

        

 The Jacobin Bil matrix of the above non-
linear equation system is written as  
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follows: 
(25) 

0 0
0

1 1

: 2 [ ],  , 1,...,
n n

i
il ij li k kj ki k lj

j kl

F
B A V x V V x V i l n

x  


   
    

In this case, an optimal iterative algorithm 
can be obtained to solve Equation  
 
1) Select the value  (0<<1); then, with 

the initial value of x0
0, the function 

 is computed. 
2) For k=1, 2, ... the following iterative 

calculations are performed: 

2

1

2

1 2

0 0
1 2

 ,

 ,

,

,

,

1
,

1

,
1

,

,

.
(1 )

T
k k k

T
k k k

k
k k k kT

k k k

k
k k

k
k k

k
k

k
k

k

k k k k k

k k
k k k

k k
k k k

k







 

 







 











 

 
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R B F

C B B

R
P R C R

R C R

v B R

v B P

u R P

v v v

F v
x x u

v  
These steps are repeated until 0

1kx    con-

verges according to the criterion 
‖𝐹௞ାଵ‖ < ε. 
Once the x0 vector is specified, the matrix 
of coefficients A (equation 21) is calcu-
lated. Then the conjugate gradient method 
can be used to solve the system of linear 
equations (20). 
 
5    Results and Discussions 
In this research, we retrieved the spherical 
harmonic coefficients from the GOCE sat-
ellite observations and compare the results 
with the coefficients of EGM96 model. 
Three different methods were tested in this 
paper: Tikhonov regularization method, 
TSVD method, and OSVRM method. 
    For this purpose, the whole globe was 

covered by a 1×1 regular grid, and the 
center of each grid is considered as the es-
timation point. The gravity field recovery 
to a high degree and order coefficients (up 
to degree and order of 250) is possible for 
GOCE observations, but it requires a su-
percomputer. Thus, in this research, the 
coefficients of the gravity field were esti-
mated to degree and order of 50.  
     The GOCE satellite data are the gradi-
ents of gravity acceleration (Kusche & 
Klees, 2002). Due to the large dimensions 
of the matrices, for estimation of coeffi-
cients, we used only the radial component 
of the gravity field ( zzV ) from the GOCE 

observations, because in this case, the 
transformation of observations isn't neces-
sary. The following tables show the results 
of different methods. 
    In Table 6, a comparison between the 
results obtained from three methods of 
regularization has been made. Table 6 
shows the RMSE difference between the 
results of different regularization meth-
ods. The results were assessed for all co-
efficients up to degree and order of 50; 
however, to summarize the table, the 
RMSE criterion has been shown only for 
some degrees and orders of the estimated 
coefficients. In this table, the RMSE be-
tween results obtained from each regular-
ization method (Tikhonov method, 
OSVRM method, and EGM96 model) and 
the coefficients resulting from GOCE ob-
servation is calculated for any degree and 
order. 
    In each column, the RMSE is given for 
the estimated coefficients up to the desired 
degree and order. The first column of table 
6 shows the RMSE between the results of 
Tikhonov regularization method vs. the 
coefficients of GOCE data processing. 
The RMSE values are in the order of 10-5. 
For the coefficients of the EGM model, 
the order of RMSE is about 10-9 which is 
much better than the Tikhonov method. In 
other words, Tikhonov method in this 
work hasn't been any significant effect on 
improving the results. On the other hand,  
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Figure 3. L-curve with Tikhonov. 

 

 
Figure 4. L-curve with DSVD. 

 
Figure 5 . L-curve with TSVD. 
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Table  2. Results from GOCE observations and Tikhonov calculations.  
  Tikhonov GOCE 

n m C S C S 

2 0 -2.7419037772909884e-005 4.6236599212669352e-018 -4.841649667904e-04 0 

2 1 4.8607119847842508e-007 -2.5010817100104957e-005 -2.525700823662e-10 1.395515029905e-09 

2 2 5.0583554900263341e-006 -1.1841920980307721e-008 0.243936742466E-05 -.140024885157E-05 

3 2 1.29575990059382190e-005 2.97417939394563520e-007 0.904802178874E-06 -.618981455772E-06 

3 3 2.57547869753464580e-007 4.33512042169693330e-006 0.721276848787E-06 0.141440680154E-05 

5 3 4.58102941812140310e-007 -6.4446625627251176e-006 -.451874314921E-06 -.214955260696E-06 

5 4 4.59429448310091810e-007 5.71704476659061410e-007 -.295320219610E-06 0.497947374945E-07 

5 5 -2.60294660349190950e-007 2.54851972563933850e-006 0.174795471385E-06 -.669368182338E-06 

10 10 -1.89594975450603620e-007 -4.0043621051322067e-007 0.100439125877E-06 -.238750300838E-07 

30 28 4.85407219765477410e-007 -3.0058539072562160e-007 -.584441578684E-08 -.809375913544E-08 

30 29 4.11108072067448150e-007 -5.9562072871234156e-007 0.389521213237E-08 0.187969991193E-08 

30 30 6.16027731493220000e-007 1.02940898081651560e-007 0.257229425698E-08 0.848735816571E-08 

32 30 5.02937015895879430e-007 -1.1789644493924266e-007 -.690056829098E-08 0.132472373219E-08 

35 34 4.15036347481664310e-007 8.39768128688313840e-008 -.798674881563E-09 0.276325910655E-08 

50 49 5.52664991771392890e-008 2.22127671785326640e-007 0.215868304713E-08 -.475090336407E-08 

50 50 -2.37399630073483230e-007 6.62684715626504590e-008 0.456424766124E-08 0.264773190543E-08 

 
 
  

Table 3. Results from GOCE observations and dsvd calculations.  
  dsvd GOCE 

n m C S C S 

2 0 -2.649023587623442e-05 -2.088835579189738e-08 -4.841649667904e-04 0 

2 1 -5.964828205257369e-08 -2.480122892375052e-05 -2.525700823662e-10 1.395515029905e-09 

2 2 3.869884736605785e-06 5.707479486902128e-07 0.243936742466E-05 -.140024885157E-05 

3 2 1.259857421249086e-05 8.661545926822130e-07 0.904802178874E-06 -.618981455772E-06 

3 3 -1.006888615740551e-06 4.143079232967882e-06 0.721276848787E-06 0.141440680154E-05 

5 3 9.602639670321296e-07 -7.109321691000948e-06 -.451874314921E-06 -.214955260696E-06 

5 4 1.308791587892802e-06 2.224704260862664e-06 -.295320219610E-06 0.497947374945E-07 

5 5 1.016882178549291e-07 2.710312553574803e-06 0.174795471385E-06 -.669368182338E-06 

10 10 4.162659655849492e-06 -4.606371682870996e-07 0.100439125877E-06 -.238750300838E-07 

30 28 6.568305862916830e-07 -2.596529055286230e-07 -.584441578684E-08 -.809375913544E-08 

30 29 -1.302540173511650e-07 -3.778797546680055e-07 0.389521213237E-08 0.187969991193E-08 

30 30 1.201884301780586e-06 1.058755985849718e-06 0.257229425698E-08 0.848735816571E-08 

32 30 1.244450610811446e-06 6.611575012158759e-07 -.690056829098E-08 0.132472373219E-08 

35 34 1.738217205640891e-06 1.195386400870544e-06 -.798674881563E-09 0.276325910655E-08 

50 49 3.837880963328032e-08 3.879891478301319e-07 0.215868304713E-08 -.475090336407E-08 

50 50 -3.255351105146776e-07 1.119227112994072e-07 0.456424766124E-08 0.264773190543E-08 
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Table 4. Results from GOCE observations and tsvd calculations.  

  tsvd GOCE 

n m C S C S 

2 0 -1.470197649884266e-09 5.334668011946423e-22 -4.841649667904e-04 0 

2 1 6.759276213896078e-13 -3.331482438287403e-11 -2.525700823662e-10 1.395515029905e-09 

2 2 -1.370077052803747e-12 -5.305271081885416e-14 0.243936742466E-05 -.140024885157E-05 

3 2 -6.471656119025104e-12 -2.463736347916412e-13 0.904802178874E-06 -.618981455772E-06 

3 3 2.950619281576821e-14 -4.274029248718163e-13 0.721276848787E-06 0.141440680154E-05 

5 3 2.068373751297736e-13 -3.661284931155739e-12 -.451874314921E-06 -.214955260696E-06 

5 4 3.682932707326545e-13 2.720022557984094e-14 -.295320219610E-06 0.497947374945E-07 

5 5 -2.336454032474866e-13 2.551163310617606e-12 0.174795471385E-06 -.669368182338E-06 

10 10 -3.959498664028026e-13 -7.164501347578725e-14 0.100439125877E-06 -.238750300838E-07 

30 28 1.536194410732852e-13 8.357047632649088e-14 -.584441578684E-08 -.809375913544E-08 

30 29 -7.827779270823781e-14 1.409844732349580e-13 0.389521213237E-08 0.187969991193E-08 

30 30 -1.712565002706274e-13 -1.012747246537633e-13 0.257229425698E-08 0.848735816571E-08 

32 30 1.454265644978689e-13 8.588291048643461e-14 -.690056829098E-08 0.132472373219E-08 

35 34 5.807440847463732e-14 3.987798475016890e-14 -.798674881563E-09 0.276325910655E-08 

50 49 -2.031351418064919e-13 1.763888199780871e-13 0.215868304713E-08 -.475090336407E-08 

50 50 -1.683076409847314e-13 -2.035208653455976e-13 0.456424766124E-08 0.264773190543E-08 

 
 
 
 
 

Table 5 . Results from GOCE observations and OSVRM calculations.  

  OSVRM GOCE 

n m C S C S 

2 0 -4.841653716980924e-04 0 -4.841649667904e-04 0 

2 1 -1.869838784676788e-10 1.195284616735103e-09 -2.525700823662e-10 1.395515029905e-09 

2 2 2.439143524328988e-06 -1.400166836708963e-06 0.243936742466E-05 -.140024885157E-05 

3 2 9.046277663688434e-07 -6.190259435393191e-07 0.904802178874E-06 -.618981455772E-06 

3 3 7.210726574739763e-07 1.414356273517268e-06 0.721276848787E-06 0.141440680154E-05 

5 3 -4.519554076625794e-07 -2.148471966072914e-07 -.451874314921E-06 -.214955260696E-06 

5 4 -2.953016466386062e-07 4.966588838441174e-08 -.295320219610E-06 0.497947374945E-07 

5 5 1.749719880227612e-07 -6.693842777681447e-07 0.174795471385E-06 -.669368182338E-06 

10 10 1.005386352334964e-07 -2.401484587209459e-08 0.100439125877E-06 -.238750300838E-07 

30 28 -5.471172467689049e-09 -7.959978369346329e-09 -.584441578684E-08 -.809375913544E-08 

30 29 4.159277718154803e-09 1.894907465430104e-09 0.389521213237E-08 0.187969991193E-08 

30 30 2.647761935878369e-09 8.129944035816356e-09 0.257229425698E-08 0.848735816571E-08 

32 30 -6.747869733339746e-09 1.393468736231077e-09 -.690056829098E-08 0.132472373219E-08 

35 34 -1.216265171080703e-09 2.667190709351536e-09 -.798674881563E-09 0.276325910655E-08 

50 49 2.270839003170000e-09 -4.597862628212736e-09 0.215868304713E-08 -.475090336407E-08 

50 50 5.438245203826104e-09 1.480856365338055e-09 0.456424766124E-08 0.264773190543E-08 
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Table 6. RMSE between different methods of regularization.  
n Tikhonov vs. GOCE OSVRM vs. GOCE EGM vs. GOCE 

1 1.728962688525945e-04 1.449863968187492e-14 2.662976961035196e-10 

2 1.535721226393333e-04 2.878016160045136e-14 3.159063134497055e-10 

10 9.364585630275397e-05 3.767275199513147e-13 7.976034857584555e-10 

11 9.015072974311100e-05 4.607725786820048e-13 8.890537083131126e-10 

20 6.994759127416688e-05 1.617659257007359e-12 1.581779723306636e-09 

25 6.330089787551022e-05 2.531216944802798e-12 2.003336075722611e-09 

30 5.824791973523789e-05 3.474765952840413e-12 2.630160153609919e-09 

35 5.424253906182881e-05 4.430400087191455e-12 3.110848253514074e-09 

40 5.096650693250293e-05 5.526221021849382e-12 3.454630169033278e-09 

45 4.823005712334312e-05 6.730811224716724e-12 3.774912925035239e-09 

49 4.635811940248126e-05 7.583174470172289e-12 3.999108722938432e-09 

 
 
 
the RMSE of the results of OSVRM 
method – that use a vector instead of scalar 
as regularization parameter – isin the order 
of 10-13 which is much better from two 
other methods.  
    Briefly, the coefficients obtained from 
the OSVRM method are much closer to  
the GOCE coefficients concerning the re-
sults of other methods. In other words, the 
results show a significant improvement in 
the accuracy of the estimated coefficients. 
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