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Abstract 
Indonesia is a region that experiences frequent earthquakes, and therefore is highly prone to earth-
quake hazards. Elevated seismicity in Indonesia means that building models to understand and pre-
dict earthquake characteristics and their associated hazards is important. The goal of this research is 
to develop a supervised learning artificial neural network (ANN) application that can predict the 
magnitude of earthquake wave propagation (bar) and the direction of propagation of earthquake wave 
using some selected earthquake data (Mw 5-8) happened in Indonesia from 1996 to 2019. The data 
was taken from the United States Geological Survey (USGS) database and the Indonesian Agency 
for Meteorological, Climatological, and Geophysics (BMKG) database. The earthquake data used in 
the artificial neural network application consists of a hidden layer with four neurons and seven input 
neurons that contain earthquake parameters, including longitude, latitude, magnitude, depth, strike, 
dip, and rake, as well as one output neuron. The magnitude and direction of energy propagation of 
the earthquakes were successfully predicted using the ANN program. Excellent agreement between 
the results of ANN and those of Coulomb 3.3 software strongly indicates that the ANN program can 
be used as an alternative to the existing Coulomb 3.3 software. The ANN model can also be further 
applied to other earthquake data around the world. The results are expected to contribute to the 
development of earthquake detection software tools. With artificial intelligence, earthquake 
prediction software will be more effective and can reduce the risks of failure in predicting the 
magnitude and direction of earthquake wave propagation. 
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1    Introduction 
Earthquakes of varying magnitudes occur 
every day around the globe. Indonesia, in 
particular, is very prone to earthquake 
hazards due to the frequent earthquakes it 
experiences, ranging from small-
magnitude earthquakes to the most 
devastating ones. Earthquakes in this 
region are generated by a variety of 
sources and are characterized by a very 
wide diversity of faulting, including 
extension, thrusting, subduction, and 
strike-slip faulting (Hutchings and 
Mooney, 2021). 
    Elevated seismicity in Indonesia, 
especially in the past two decades, has led 
to a large number of studies to better 
understand Indonesian seismicity and 
tectonics (Hutchings and Mooney, 2021; 
Socquet et al., 2019; Bradley et al., 2017; 
Supendi et al., 2018; Suhardja et al., 2020; 
Sahara et al., 2021; Patria and Putra, 2020; 
Nugraha and Hall, 2018; Liu and Harris, 
2014; Widiyantoro et al., 2020). Some of 
these studies suggested that an earthquake 
with a small magnitude may not be that 
dangerous, but large magnitude 
earthquakes can have direct impacts due to 
the aftershocks that may occur afterwards. 
The impacts vary from place to place 
depending on the local conditions where 
the earthquake strikes.  
    The emergence of thousands of 
aftershocks is inseparable from the 
process of spreading and changing stress 
on the rock, which is then distributed in all 
directions so that it disturbs other rocks 
around it. When the elastic limit of the 
rock is exceeded, energy is released as a 
new earthquake because the rock can no 
longer withstand stress. One method to 
visualize the distribution of earthquake 
stress is the Coulomb stress change 
method (King et al., 1994). Research to 
study changes in Coulomb stress has been 
carried out by many researchers (Parsons 
et al., 2006; Sianturi et al., 2018; Miao and 
Shou-Biao, 2012). 
    One of the most commonly used 

programs to investigate changes in 
Coulomb stress is the Coulomb 
Geophysics 3.3 software, an open source 
provided by the USGS (United States 
Geological Survey) (Toda et al., 2011). 
Coulomb is aimed at both publication-
directed research and academy classroom 
instruction. Static deflections (on any 
surface or at GPS stations), strains, and 
stresses caused by fault slip, magmatic 
intrusion, or dike expansion can be 
calculated. Coulomb is interested in how 
an earthquake helps promote or prevent 
failure on nearby faults and how fault slip 
or dike growth compresses a nearby 
magma chamber. Geologic deformation 
caused by strike-slip faults, normal faults, 
or fault-bend folds is another practical 
application (Toda et al., 2011). In 
addition, Artificial Neural Network 
(ANN) has been used recently to predict 
the magnitude of earthquakes happening 
around the world, such as in Southern 
California (Panakkat and Adeli, 2007), the 
Northern Red Sea (Alarifi et al., 2012), 
and Greece (Moustra et al., 2011). The 
ANN has also been widely implemented 
in many studies in various fields, 
including in material science (Nasouri et 
al., 2013; Brooks and Tucker, 2015; 
Naghibzadeh and Adabi, 2014; Faridi-
Majidi et al., 2012).  
    Recently, a model based on ANN was 
used in studies related to earthquakes in 
Indonesia. Syifa et al. (2019) applied 
ANN to map post-earthquake damage for 
the Mw 7.4 earthquake in 2018 striking 
Donggala, Central Sulawesi, Indonesia, 
which triggered a tsunami and liquefaction 
in the surrounding area. Similarly, using 
123 seismic datasets, ANN was also 
applied to predict earthquake causalities 
and damages in Indonesia (Oktarina et al., 
2019). Moreover, Shodiq et al. (2018) 
developed an ANN model to study the 
aftershocks of some selected earthquakes 
in Indonesia. These studies, however, 
have not studied the prediction of 
magnitude and direction of energy 
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propagation of earthquakes in Indonesia. 
Hence, this study aims to develop an ANN 
program to determine the earthquake mag-
nitude and the direction of its energy prop-
agation for some selected earthquakes oc-
curred in Indonesia from 1996 to 2019 
with a magnitude of Mw 5 to 8. The per-
formance of the ANN program is also 
evaluated by comparing its results with 
Coulomb 3.3 results. Another novel aspect 
of this research involves using artificial 
intelligence to calculate and simulate the 
magnitude (bar) and direction of 
earthquake wave propagation for some 
selected earthquakes. This research will 
help experts, researchers, and technicians 
construct a software tool to detect 
earthquakes. With artificial intelligence, 
earthquake prediction software will be 
more productive and will reduce the risks 
of failure in predicting the magnitude and 
direction of earthquake wave propagation 
in the future.       
 
2    Methods 
2-1    Artificial Neural Network (ANN) 
An earthquake can occur by a sudden slip 
on a fault. The existence of a fault results 
in a change in shear stress in the surround-
ing area. The increase or decrease in shear 

stress that occurs depends on the position, 
geometry, and slip of the fault source and 
the geometry of the receiver, such as the 
rake. By assuming a simple Coulomb fric-
tion model that uses a hemispherical elas-
tic model in a rectangular plane, for earth-
quakes, the change in Coulomb failure 
stress is formulated as (Okada, 1992): 

)( Pf                              (1) 

    where the P value is the pore pressure 
(bar) which can change the normal stress 
along the fault plane and is related to the 
Skeptom coefficient (B) (friction coeffi-
cient) with values varying from 0 to 1.   
is the change in shear stress on a given 
fault plane (positive in the direction of 
fault slip),   is the change in normal fault 

stress, and )1(' B   is the effective 
friction coefficient. The coordinate system 
for calculating the Coulomb stress on the 
fault plane is shown in Figure 1-a. Thus, 
the change in static Coulomb stress (Cou-
lomb Failure Function) caused by a pri-
mary vibration with simple assumptions 
for the effect of pore pressure (King et al., 
1994) is: 
   f     (2) 

 

 
  

Figure 1. (a) The coordinate system for calculating Coulomb stress on fault planes (King et al., 1994). 

 
    The Coulomb Failure Function (Cou-
lomb stress change) can be described in 
terms of the magnitude of the earthquake 
wave propagation and the direction of 

earthquake wave propagation. In Cou-
lomb, there are four kinds of receiver 
faults: (1) "specified" receiver faults in 
which all faults have uniform receiver 
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fault geometry, (2) faults optimally ori-
ented for failure, (3) receiver faults with 
the geometry set in the input file, and (4) 
focal mechanism files, in which there are 
always two orthogonal fault planes. Illus-
tration of data input and results of Cou-
lomb stress changes in Coulomb software 
3.3 on specified receiver fault planes, us-
ing the default "specified faults" is shown 
in Figure 1-b. Coulomb averages the infor-
mation on all input fault patches in the in-
put file and puts the values in the boxes, 
such as strike, dip, and rake. For practice, 
choose a strike/dip/rake of 360°/90°/0° 
(for example), change the friction coeffi-

cient to 0.0, set the stress change color sat-
uration to ±5 bars (for example) to com-
pute magnitude and direction of earth-
quake propagation, and hit "Calc. & 
View", resulting in optimum slip planes 
rotating near the fault. If the regional de-
viatoric stress is much larger than the 
earthquake stress drop (red color), the ori-
entations of the optimum slip planes are 
more limited, and regions of increased 
Coulomb stress diminish in size and be-
come more isolated from the source fault. 
In this and subsequent plots, the maximum 
and minimum stress changes exceed the 
plotted color bar range (in other words, the 
scale is saturated). 

 

 
Figure 1. (b) Illustrasion of data input and results of Coulomb stress changes in Coulomb software 3.3 on specified re-

ceiver fault planes. 

 
 
    The ANN method is a branch of artifi-
cial intelligence that uses mathematical or 
computational models where the way it 
works is a simplification of the biological 
network model of the human brain. This is 
because, in principle, ANN is a computer 
program created based on the workings of 
the biological network of the human brain. 
In terms of its function, ANN was created 
to design a computer that can be used to 

carry out the learning process from an ex-
ample of an incident, while from the de-
sign structure. ANN is a calculating device 
that is intended to be able to do something 
similar to the workings of the biological 
network of the human brain. Like the hu-
man brain, a neural network also consists 
of several neurons that have connections 
with one another. These neurons will 
transform the information received 
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through their exit connections to other 
neurons; this relationship is known as the 
weight. In a neural network, neurons are 
collected in layers called neuron layers. 
    The ANN structure generally consists 
of an input layer, a hidden layer, and an 
output layer. The input layer contains neu-
rons that receive data directly from out-
side. The hidden layer receives signals 
from the input layer and forwards them to 
the output layer. The effect of the number 
of input and output layers on the results 
and accuracy of work is that the more lay-
ers, the higher the value of the results and 
accuracy, but the longer it takes the com-
puter to analyze. The output layer contains 
neurons that represent the target and the 
output of the calculation model. The dif-
ference between the target and the output 
of the ANN calculation model is the ANN 
error rate. 
    In general, ANN has one or more hid-
den layers and an output layer. The ANN 
process is calculated from the input layer 
to the hidden layer. Furthermore, the re-
sults of the hidden layer are used to calcu-
late the output layer. Errors in the output 
cells are corrected, and the latest error val-
ues are recalculated by adjusting the 

weight through the hidden layer, and then 
calculated back to the input layer. Training 
the neural network in this model means 
changing the weights. The weights are 
changed by minimizing the sum of the 
squares of the differences between the tar-
get and network output values. We use the 
back-propagation algorithm to train neural 
networks in this study. This algorithm up-
dates the network weights when the per-
formance function rapidly decreases. 
Therefore, the convergence of errors can 
take some time, depending on the errors 
allowed in the output layer. 
    An ANN consists of a hidden layer with 
multiple nodes (neurons), input neurons, 
and one output neuron. The hidden neuron 
activation function adopts a sigmoid func-
tion, and the output neuron adopts a linear 
function. The neuron in this study enters 
the weighted sum into the linear function 
(activation function) and produces its out-
put. The output activation function consid-
ers the neuron's system, which is com-
monly a linear function. An artificial neu-
ral network consisting of these variables is 
shown in Figure 2.  

 

 
Figure 2. Schematic of an Artificial Neural Network (ANN). 

 
    Circles and arrows in Figure 2 indicate 
neurons and signal flow, respectively. The 
terms 𝑥ଵ, 𝑥ଶ, and 𝑥ଷ are inputs. wij and wij

2 

are the first and second layer weight ma-
trices, respectively. The input can be mul-
tiplied by the weights before reaching the 
neurons. Once the neuron-weighted inputs 
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have been collected, these values are 
added up as a weighted sum. In this study, 
we modified the equations of artificial 
neural networks used by several research-
ers (Alarifi et al., 2012; Alizadeh et al., 
2018). The weighted amount can be calcu-
lated using Eq. (3): 
𝑣௜ = ∑ ∑ 𝑤௜௝𝑥௝௝௜ =

ቀ
𝑤ଵଵ 𝑤ଵଶ 𝑤ଵଷ

𝑤ଶଵ 𝑤ଶଶ 𝑤ଶଷ
ቁ

ଶ×ଷ
× ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱

ଷ×ଵ

  (3) 

where wij and 𝑥௝  are weights and inputs, 
respectively. 
    The neuron enters the weighted amount 
into the activation function (sigmoid func-
tion), and produces its output as Eq. (4): 

ቀ
𝑜ଵ

𝑜ଶ
ቁ = ൬

𝜑(𝑣ଵ)

𝜑(𝑣ଶ)
൰                           (4) 

    Eq. (4) is the input data for the second 
screen and one gets the total μi in the sec-
ond screen as Eqs. (5) and (6): 
(5) 
𝜇௜ = ∑ ∑ 𝑤௜௝

(ଶ)𝑜௝௝௜ = ∑ ∑ 𝑤௜௝
(ଶ)𝜑൫𝑣௝൯௝௜   

𝜇௜ = (𝑤ଵଵ
(ଶ) 𝑤ଵଶ

(ଶ)) × ൬
𝜑(𝑣ଵ)

𝜑(𝑣ଶ)
൰   (6) 

     The neuron inputs the sum of the 
weights into the linear function and pro-
duces the output. The output activation 
function (linear function) defines the be-
haviour of the neuron, and can be ex-
pressed as: 
𝑦 = 𝜓(𝜇௜) = 𝜓൫∑ ∑ 𝑤௜௝

(ଶ)𝜑൫𝑣௝൯௝௜ ൯ (7) 
where φ(v) and ψ(μ) are sum function and 
a linear function, respectively. 
    A systematic technique for adjusting 
weights according to the information pro-
vided is called a learning rule. Since train-
ing is a neural network's way of storing 
data, learning rules are an important ele-
ment of neural network research. Assum-
ing that the neural network has the correct 
output di (where di is the correct output of 
the neuron-i output), then the error of the 
output node-i can be written as: 
𝑒௜ = 𝑑௜ − 𝜓(𝜇௜)        (8) 
    The delta rule can be formulated as: 
𝑤௜௝ ← 𝑤௜௝ + 𝛼𝛿௜𝑥௝         (9) 

𝑤௜௝ ← 𝑤௜௝ + 𝛼𝜓̇(𝑣)𝑒௜𝑥௝     (10) 

𝑤௜௝ ← 𝑤௜௝ + ∆𝑤௜௝      (11) 
where α and δi are the rates (0<α<1) and 
the delta function is output i. ei is an error 
from output i and 𝜓̇(𝑣) is the derivative of 
the linear function 𝜓(v) at the result of 
node i. In the hidden screen, the sigmoid 
function, φ(v), and its derivative, 𝜑̇(𝑣) can 
be written as (Alarifi et al., 2012; Alizadeh 
et al., 2018): 

𝜑(𝑣) =
ଵ

ଵା௘షೡ
= (1 + 𝑒ି௩)ିଵ      (12) 

𝜑̇(𝑣) =
ௗఝ(௩)

ௗ௩
= 𝜑(𝑣)൫1 − 𝜑(𝑣)൯ (13) 

    This study uses a back-propagation al-
gorithm to train a neural network algo-
rithm. This algorithm updates the network 
weights where the performance function 
degrades rapidly. 
    ANN Backpropagation is an algorithm 
that is often used in solving complex prob-
lems. This method is an excellent method 
for dealing with complex pattern recogni-
tion problems. The characteristics of the 
activation function of ANN Backpropaga-
tion are that it must be continuous, differ-
entiable and monotonic (non-decreasing). 
The function is written in the form of Eqs. 
(14) and (15): 

𝑓(𝑥) =
ଵ

ଵା௘షೣ        (14) 

𝑓(𝑥)ᇱ = 𝑓(𝑥)[1 − 𝑓(𝑥)]  (15) 
    ANN Backpropagation calculations 
consist of three processes, namely forward 
calculations, back-propagation calcula-
tions, and changes in weights and biases. 
The data is entered for each neuron in the 
input layer and the calculations are contin-
ued up to the output layer (forward calcu-
lations). The difference between the out-
put value predicted by ANN and the actual 
output value (target value) is called the er-
ror rate. The error value is then used to 
modify the ANN weight factor in the 
backward calculation process from the 
output layer to the input layer. 
    The prediction accuracy of ANN can be 
determined by calculating the coefficient 
of determination (R2). The value of R2 is 
determined by Eq. (16), which is a func-
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tion of the difference between the pre-
dicted output of ANN (𝑌𝑘) and the target 
value (𝑇𝑘):  

𝑅ଶ = 1 − ൤
∑ (்ೖି௒ೖ)మ೙

ೖ

∑ (்ೖି௒ೌ ೡ೒)మ೙
ೖ

൨             (16) 

where the magnitude of Y𝑎𝑣𝑔 is the aver-
age value of all the target values of n 
pieces of data. The closer the R2 value to 
1, the better the ANN prediction of the ac-
tual (target) value. 
    The input and target parameters in ANN 
generally have different dimensions, units, 
and ranges of values. The raw data used to 
train the ANN must be normalized first to 
reduce the gap between input and output 
parameter values. Normalization of ANN 
raw data is done by Eq. (17) (Alarifi et al., 
2012; Alizadeh et al., 2018): 

𝑉௡௘௪ =
௏೚೗೏ି௏೘೔೙

௏೘ೌೣି௏೘೔೙
𝑥(𝐷௠௔௫ − 𝐷௠௜௡) +

𝐷௠௜௡                             (17) 
    The cells represent the function (γ) 
which sums the products of the weights 
(wi) and input (ui) and also adds the bias 
(w0) as shown in Eq. (18): 
𝛾 = 𝑤଴ + ∑ 𝑢௜

ଷ
௜ୀଵ 𝑤௜    (18) 

    In general, an Artificial Neural Network 
(ANN) has one or more hidden layers and 
an output layer. The ANN process is cal-
culated from the input layer to the hidden 
layer. Furthermore, the results of the hid-
den layer are used to calculate the output 
layer. Errors in the output cells are cor-

rected and the latest error values are recal-
culated by adjusting the weight through 
the hidden layer, and then calculated back 
to the input layer. Therefore, the conver-
gence of errors can take some time, de-
pending on the errors allowed in the output 
layer. The total error in the ANN output is 
defined as: 

𝐸 =
ଵ

ଶ
∑ (𝑇௝ − 𝑂௝)ଶ

௝∈௃      (19) 

where Tj denotes the target output, Oj de-
notes the activation value of the output 
layer, and J is the number of iterations for 
the learning process. 
 
2-2    Implementation of ANN 
In the present study, an artificial neural 
network was created using earthquake 
data consisting of a hidden layer with 4 
neurons, 7 input neurons comprising 7 
earthquake parameters, i.e., longitude, lat-
itude, magnitude, depth, strike, dip, and 
rake, and one output neuron. The hidden 
neuron activation function adopts a sig-
moid function whereas the output neuron 
adopts a linear function (Figure 3). Earth-
quake data used in this study was adapted 
from USGS database and the Indonesian 
Agency for Meteorological, Climatologi-
cal, and Geophysics (BMKG) database. 
The data included earthquakes occurring 
between 1996 and 2019 with a magnitude 
of Mw 5-8. 
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Figure 3. Artificial neural network model. 

    The circles and arrows in Figure 3 rep-
resent neurons and signal flows of the 
form 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, and 𝑥ସ are the earthquake 
input parameters. w୧୨ and w୧୨

ଶ are the ma-
trix weights of the first and second 
screens. The total weight can be calculated 
using Eqs. (20) and (21): 
𝑣௜ = ∑ ∑ 𝑤௜௝𝑥௝௝௜            (20) 
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ቌ
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𝑤ସସ

𝑤ଵହ

𝑤ଶହ
𝑤ଷହ

𝑤ସହ

𝑤ଵ଺

𝑤ଶ଺
𝑤ଷ଺

𝑤ସ଺

𝑤ଵ଻

𝑤ଶ଻
𝑤ଷ଻

𝑤ସ଻

ቍ

଻×ସ

×

ቌ

𝑥ଵ

𝑥ଶ

𝑥ଷ
𝑥ସ

ቍ

ସ×ଵ

                                    (21) 

    Once the number of neurons are substi-
tuted into the activation function (sigmoid 
function), the output is obtained: 

ቌ

𝑜ଵ

𝑜ଶ
𝑜ଷ

𝑜ସ

ቍ

ସ௫ଵ

= ൮

𝜑(𝑣ଵ)

𝜑(𝑣ଶ)
𝜑(𝑣ଷ)
𝜑(𝑣ସ)

൲

ସ௫ଵ

   (22) 

    Eq. (22) will be the second screen input, 
the results of which are shown in Eqs. (23) 
and (24): 
                                                            (23) 
𝜇௜ = ∑ ∑ 𝑤௜௝

(ଶ)𝑜௝௝௜ = ∑ ∑ 𝑤௜௝
(ଶ)𝜑൫𝑣௝൯௝௜

  
𝜇௜ =
(𝑤ଵଵ

(ଶ) 𝑤ଵଶ
(ଶ) 𝑤ଵଷ

(ଶ) 𝑤ଵସ
(ଶ))ଵ×ସ ×

൮

𝜑(𝑣ଵ)

𝜑(𝑣ଶ)
𝜑(𝑣ଷ)
𝜑(𝑣ସ)

൲

ସ×ଵ

                                      (24) 

  
    The result of the activation function 
(linear function) is the behaviour of the 
neuron and can be expressed as: 
𝑦 = 𝜓(𝜇௜) = 𝜓൫∑ ∑ 𝑤௜௝

(ଶ)𝜑൫𝑣௝൯௝௜ ൯  (25) 
In this model, the goal of creating an arti-
ficial neural network is to change the 
weights and minimize the sum of the 
squares of the differences between the tar-
get and the output values. 
 
2-3    Validation of ANN results based 
on Coulomb 3.3 software 
After creating the artificial neural network 
program, it is validated using the same 
data by Coulomb 3.3 software. Flowchart 
for calculating Coulomb stress and strain 
based on Coulomb 3.3 software with a 
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friction coefficient of 0.4 is presented in Figure 4. 
 

 
Figure 4. Flowchart of calculations with Coulomb 3.3 software. 

 
3    Results and discussion 
3-1    Determination of the earthquake 
magnitude  
In this model, five variables are used as 
free variables 𝑥௜, where 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, and 
x5 are depth, magnitude, strike, dip, and 
rake, respectively. The artificial neural 
network operates four nodes in the hidden 
layer to receive five inputs 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 
and x5 and uses 100,000 iterations. 
According to empirical evidence in the 
computational physics and artificial 
intelligence laboratory, the computer can 
process data quickly while achieving 
precise modeling results after 100,000 
iterations. The magnitude of earthquake 
 

 wave propagations of some earthquake 
samples based on this model is presented 
in Figure 5-a, where the actual data is also 
shown. It is obvious from the figure that 
the results of the ANN model agree very 
well with the actual data. In this study, we 
used the R-squared (R2) coefficient to 
demonstrate a satisfactory adjustment of 
the proposed model to the experimental 
data. Based on this study, the model is 
considered effective in predicting the 
magnitude of the earthquakes wave 
propogation (in bars) with R2 value of 
91.31% (Figure 5-b). The result of the 
model,  y୧ = ψ(μ୧), can be formulated as 
follows: 
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       (b) 

Figure 5. (a) Magnitude of earthquake wave propagation from ANN model compared with actual data in the unit (bar). 
(b) Comparison between ANN and Coulomb 3.3 results.  
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3-2    Determination of the direction of 
earthquake wave propagation 
In this section, we give more details about 
the Coulomb 3.3 software and provide an 
example output of our method, both ANN 
and Coulomb 3.3. In this model, five 
earthquake source parameter variables are 
used as independent variables 𝑥i, where 
𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, and 𝑥ହ are depth, 
magnitude, strike, dip, and rake, 
respectively. An artificial neural network 
operates four nodes in the hidden layer to 

receive five inputs 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, and 
𝑥ହ using 100,000 iterations. Prediction of 
the direction of earthquake wave 
propagation from the ANN model is 
shown in Figure 6-a. Comparison with the 
actual data in the same figure shows an 
excellent agreement. Figure 6-b presents 
the comparison between results obtained 
from the ANN model and those from the 
Coulomb 3.3 program. As seen from the 
figure, good agreement is observed 
between the ANN model and the Coulomb 
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3.3 (R2=85.88%). This implies that the 
ANN model is an effective model that can 
be used to predict the direction of 
earthquake wave propagation. 

The result of the model , y୧ = ψ(μ୧). can 
be formulated as follows: 
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Figure 6. (a) Direction of earthquake wave propagation from ANN model compared with actual data. (b) Comparison 
between ANN and Coulomb 3.3 results.  

 
3-3    Comparison of results from ANN 
and Coulomb software 3.3  
In this section, we give more details about 
the Coulomb 3.3 software and provide an 
example output of our method, both ANN 
and Coulomb 3.3. Based on our findings, 
Table 1 compares earthquake magnitude 
from ANN and Coulomb 3.3 software, 
while Table 2 shows the direction of 
earthquake wave propagation obtained 
from the ANN method and Coulomb 3.3 
program. The magnitude of earthquake 
wave propagations of some earthquake 
samples based on this model is presented 
in Table 1 and Figure 5, where the actual 
data is also shown. It is evident from the 
Table 1 that the results of the ANN model 
agree very well with the actual data. The 
proposed model was adjusted 
satisfactorily to the experimental data 
using this R-squared (R2) coefficient. In 
this study, the model effectively predicted 
earthquake wave propagation (in bars) 
with an R2 value of 91.31 percent, but the 
accuracy is less than 95 percent, so the 
model results do not precisely match the 
Coulomb 3.3 results. Table 2 compares 
results obtained from the ANN model and 
those from the Coulomb 3.3 program. 
Table 2 and Figure 6 show good 
agreement between the ANN model and 
the Coulomb 3.3 (R2=85.88%). Since the 
modeling accuracy of software data is 
only above 80% but less than 95%, the 
numbers in each volume in the Table 2 are 
not the same, but these results are 
considered good because R2 values above 
80% produce quite good results, while 
those below 80% are quite poor. 
    Table 1 presents the comparison 
between earthquake magnitude from ANN 
and Coulomb 3.3 software, while Table 2 
shows the direction of earthquake wave 
propagation obtained from the ANN 
method and Coulomb 3.3 program. The 
two tables clearly indicate that the 
magnitude and direction of wave 

propagation of 35 earthquake samples 
calculated from the two models show very 
good agreement. Hence, the ANN 
program used in the present study can be 
used as an alternative to the Coulomb 3.3 
software in predicting both the earthquake 
magnitude and the direction of its wave 
propagation. 

 
3-4    Performance of the ANN model  
Good results generated from an ANN 
model in this article is consistent with 
other reports in the literature. For instance, 
Huang et al. (2022) recently employed an 
ANN model to develop a probabilistic 
seismic demand model, the results of 
which were also compared to the 
conventional linear regression models. 
Their results from the ANN model are 
closer to the 1:1 line, indicating a good 
correlation between the predicted and 
measured data. They also showed that 
reliable fragility models can be generated 
using the employed ANN model. 
Furthermore, it was reported that A BP 
ANN model was successfully built for 
earthquake magnitude prediction in Him-
alayas (Narayanakumar and Raja, 2016) 
using ANN simulation with nine input 
nodes, 12 hidden layers of 4 nodes each, a 
Tan-sigmoid activation function, and an 
output. The results of this modeling have 
flaws, such as the computer's processing 
time being quite long and the input data 
being quite large, but having good predic-
tion results similar to our neural networks. 
This study showed that the ANN model 
yielded good predictions for earthquakes 
of magnitude between 4.0 and 6.0. Similar 
results were also reported in some studies 
such as Moustra et al. (2011), Pozos-Es-
trada and Gómez (2014), Oktarina et al. 
(2019), and Mignan and Broccardo 
(2020). 
    ANN models can also be combined 
with other models to obtain more accurate 
prediction of earthquake characteristics. 
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For example, Alizadeh et. al. (2018) 
developed a new hybrid framework 
utilizing ANP (Analytic Network Process) 
and ANN models to construct a composite 
economic, environmental, social, and 
physical vulnerability index, applied to 
Tabriz city, a seismic-prone province in 
Iran. The model, they claimed, can be 
replicated and applied to other sismic-
prone regions around the world. 
Additionally, a model based on support 
vector regressor and hybrid neural 
networks was also successfully developed 
and applied to Hindukush, Chile and 
Southern California regions (Asim et al., 
2018). They showed that using this hybrid 
model, better prediction can be obtained 
for all considered regions compared to all 
previous studies.  
    All these studies indicate that the use of 
ANN in earthquake forcasting is 
promising and that the accuracy of the 
forecast can further be improved using 
hybrid models involving ANN models. In 
general, such models are not only 
applicable to specific regions, but can also 
be replicated and applied to other regions 
prone to seismic hazards. 
 
4    Conclusions 
An Artificial Neural Network (ANN) 
program has been created to determine the 
magnitude (bar) and direction of 
earthquake wave propagation of some 
selected earthquakes in Indonesia. The 
obtained results have a determinant 
coefficient R2 of 0.9131 for the magnitude 
of earthquake wave propagation and R2 of 
0.8588 for the direction of earthquake 
wave propagation. These results prove 
that the ANN program developed can be 
used as an alternative to the existing 
Coulomb stress 3.3 software. The results 
of the present study are expected to make 
a contribution to the development of a 
software tool to detect earthquakes. 
Artificial intelligence also leads to more 
productive earthquake prediction software 
in the future. 
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