بررسی کاربرد عدد موج محلی در برآورد عمق داده های مغناطیسی؛ بررسی موردی: معدن سنگ آهن سیریز

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشکده مهندسی معدن دانشگاه صنعتی اصفهان، ایران

2 دانشکده مهندسی معدن، پردیس دانشکده‌‌های فنی، دانشگاه تهران، ایران

3 دانشکده مهندسی معدن و متالورژی دانشگاه یزد، ایران

چکیده

سیگنال تحلیلی یک کمیت مختلط است که می توان آن را با دو مولفه دامنه و فاز بیان کرد. عدد موج محلی برابر با شدت تغییرات

مولفه فاز سیگنال تحلیلی است. در سال های اخیر این روش بهطور گسترده در پردازش داده های مغناطیسی، شامل تعیین موقعیت

افقی و عمق توده های مغناطیسی استفاده شده است. مانند دامنه سیگنال تحلیلی می توان عدد موج محلی مراتب بالاتر را نیز محاسبه

و از آنها در تفسیر داده های مغناطیسی استفاده کرد. از روش عدد موج محلی به دو صورت در برآورد عمق توده های مغناطیسی

استفاده می شود. 1) برآورد عمق با استفاده از مقدار بیشینه عدد موج. در صورت داشتن دانش اولیه نسبت به مدل توده، می توان عمق

برخی مدل های خاص (تماس (کنتاکت)، دایک نازک، و استوانه افقی) را برآورد کرد. برای این منظور فقط از مشتقات مرتبه دوم

استفاده می شود. با استفاده از این روش می توان هم زمان با عمق، شاخص ساختاری توده را نیز برآورد کرد که این امر مستلزم استفاده

از مشتقات مرتبه سوم میدان پتانسیل است و در صورت وجود نوفه در داده ها، می تواند بر نتایج تاثیر گذارد. 2) برآورد عمق و موقعیت

افقی توده با استفاده از عدد موج محلی تعمیم یافته. در روش دوم بدون نیاز به دانش قبلی، نسبت به مدل توده می توان عمق و

موقعیت افقی آن را برآورد کرد. روش های مبتنی بر عدد موج محلی روی داده های نیم رخ و شبکه بندی شده قابل اجرا هستند. در این

مقاله به طور کامل روش های برآورد عمق بر مبنای عدد موج محلی معرفی و محدودیت ها، معایب و مزایای هرکدام با اعمال بر

داده های مغناطیسی مصنوعی ذکر شده است. از این روش برای تفسیر داده های واقعی مغناطیسی در محدوده اکتشافی سیریز استفاده

شده است.

کلیدواژه‌ها


عنوان مقاله [English]

The application of the local wavenumber for depth estimation of magnetic data; Case study: Siriz Iron Mine

نویسندگان [English]

  • Moslem Fatehi 1
  • Gholamhosein Norouzi 2
  • Ali Dabbagh 3
چکیده [English]

Depth detection of magnetic bodies is the most important goal in magnetic data interpretation, and there are so many different methods for this  purpose. After Nabighian (1972) proposed the analytic signal and used it for magnetic data interpretation, so many authors and researchers have used the definition of analytic signal in magnetic data interpretation (Roest et all,1992; Hsu et all, 1996, 1998; Thurston and Smith, 1997; Smith et all, 1998; Thurston et all, 2002; Salem et all, 2005, 2008; Keating, 2010).
The analytic signal is a complex relation, which its real and imaginary parts are horizontal and vertical derivatives of the magnetic field, respectively. Therefore, the analytic signal can be introduced by amplitude and phase. The amplitude of an analytic signal is equal to the root square of horizontal and vertical derivatives () and its phase is equal to . Both amplitude and phase can be used in magnetic data interpretation. The maximum amplitude of an analytic signal can be used for edge detection (the maximum amplitude of an analytic signal is located on the body), and also for depth estimation. The depth estimation methods based on the amplitude of the analytic signal use the maximum amplitude of different orders of the analytic signal.
    The local wavenumber is based on the gradient of phase and recently it has been used in magnetic data interpretations, such as edge and depth detection of magnetic sources. Like the amplitude of the analytic signal, high orders of the local wavenumber are calculated and used in magnetic data interpretation.
The local wavenumber is used for depth detection in two ways:
1) Depth estimation based on the maximum value of local wavenumber: The maximum value of the local wavenumber is located on the magnetic bodies and with a priori knowledge about the model of magnetic bodies (for example: contact, thin dike, horizontal cylinder, …), magnetic source depth can be estimated. In this way, the depth detection’s equation only use the second order derivative of magnetic field. Therefore, it is more suitable for interpretation of noisy data. However, in early stages of exploration, usually there is not any knowledge about the model of sources. Also, the depth can be estimated without any prior knowledge about the model, but it uses the third order derivative of the magnetic field.
2) The estimation of depth and horizontal location of source using the enhanced local wavenumber. In this method, a linear equation was obtained that estimates the depth and the horizontal location of the magnetic bodies without any prior knowledge about the model. A window is passed over the data and this linear relation is solved by the least square method. These methods only use the second order derivative of the magnetic field. 
These methods are applicable on profile and gridded data.
    In this study, the local wavenumber-based methods are introduced and their advantages and disadvantages are discussed by applying to synthetic data. For these methods, we have developed code in MATLAB software. These methods are also applied to a magnetic anomaly in Ciriz in Kerman Province, Iran.

کلیدواژه‌ها [English]

  • Magnetic bodies depth detection
  • phase of analytic signal
  • local wavenumber

وثوقی، ب.، زمین‌شناسی عمومی محدوده اکتشافی سیریز مجتمع، صنعت و معدن ذوب آهن جنوب شرق ایرانیان، تابستان 1390.

فاتحی. م.، و نوروزی. غ. ح.، 1391، تخمین مرز و شیب توده‌های مغناطیسی با استفاده از مشتقات مرتبه اول میدان مغناطیسی: چهارمین کنفرانس مهندسی معدن، 157-164.

فاتحی. م.، نوروزی. غ. ح، و حاجی‌ئی، ف.، 1392، تخمین عمق توده‌های مغناطیسی با استفاده از مشتقات سیگنال تحلیلی: مجله ژئوفیزیک ایران، 7(4)، 52-63.

Atchuta Rao, D., RamBabu, H., Sanker and Narayan, P. Y., 1981, Interpretation of magnetic anomalies due to dikes: The complex gradient method: Geophysics, 46,1572-1578.

Blakely, R. J., and Simpson, R. W., 1986, Approximating edges of source bodies from magnetic or gravity anomalies: Geophysics, 51, 1494–1498.

Debeglia, N., and Corpel, J., 1997, Automatic 3-D interpretation of potential field data using analytic signal derivatives: Geophysics, 62(1), 87–96.

Hsu S. K., Coppens, and D., Shyu, C. T., 1998, Depth to magnetic source using the generalized analytic signal: Geophysics, 63, 1947-1957.

Hsu, S. K., Sibuet, J. C., and Shyu, C. T., 1996, High-resolution detection of geologic boundaries from potential-field anomalies: An enhanced analytic signal technique: Geophysics, 61(2), 373-386.

Keating, P., 2010, Improved use of the local wavenumber in potential-field interpretation: Geophysics, 74, 75–85.

Nabighian, M. N., 1972, The analytic signal of 2dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation: Geophysics, 37, 507- 517.

Nabighian, M. N., 1974, Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Geophysics, 39, 85-92.

Roest, W. R., Verhoef, J., and Pilkington, M., 1992, Magnetic interpretation using the 3-D analytic signal: Geophysics, 57, 116-125.

Salem, A., Ravat, D., Smith, R., and Ushijima, K., 2005, Interpretation of magnetic data using an enhanced local wavenumber (ELW) method: Geophysics, 70, 7–12.

Salem, A., Williams, S., Fairhead, D., Smith, and R., Ravat, D., 2008, Interpretation of magnetic data using tilt – angle derivatives: Geophysics, 73, 1–10.

Salem, A., and Smith, R., 2005, Depth and structural index from normalized local wavenumber of 2D magnetic anomalies: Geophysical Prospecting, 53, 83–89.

Smith, R. S., Thurston, J. B., Dai, T. F., and MacLeod, I. N., 1998, ISPI -The improved source parameter imaging method: Geophysical Prospecting, 46,141–151.

Thurston, J. B., and Smith, R. S., 1997, Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI TM method: Geophysics, 62, 807–813.

Thurston, J. B., Smith, R. S., and Guillon, J. C., 2002, A multi model method for depth estimation from magnetic data: Geophysics, 67, 555–561.