بررسی مخزن زمین‏گرمایی منطقه محلات استان مرکزی با استفاده از برگردان یک‏بُعدی و دوبُعدی داده‏های مگنتوتلوریک

نویسندگان

1 موسسه ژئوفیزیک دانشگاه تهران، ایران

2 استادیار، گروه فیزیک، دانشکده علوم، دانشگاه اراک دانشگاه صنعتی اراک، ایران

چکیده

در این مقاله بررسی مخزن زمین‏گرمایی با استفاده از داده‏های مگنتوتلوریک در سال 2011 صورت گرفته است‏.  ناحیه مورد بررسی در 15 کیلومتری شهرستان محلات واقع در استان مرکزی است. اندازه‏گیری‏های مگنتوتلوریک در 17 ایستگاه با فواصل 500 متر صورت گرفته است. روش میدان طبیعی مگنتوتلوریک شیوة بسیار مفیدی در به نقشه درآوردن ساختار زیرسطح است و به علت عمق نفوذ زیاد، یکی از موثرترین روش‏های الکترومغناطیسی برای شناسایی سامانه‌‌‏های زمین‏گرمایی است. پردازش داده‏ها و وارون‏سازی یک‌بُعدی برای هرکدام از ایستگاه‏ها صورت گرفت و در ادامه وارون‏سازی دوبُعدی این داده‏ها به انجام رسید. نتایج به‏دست آمده از وارون‏سازی و مدل حاصل از داده‏های دترمینان، رسانایی الکتریکی ساختارها را در توافق خوبی با داده‏های زمین‏شناسی مشخص کرده است. مهم‏ترین این نتایج وجود یک زون رسانا بین دو زون مقاوم است که زون رسانا را می‏توان به مخزن زمین‏گرمایی نسبت داد. این زون در عمق بین 800 تا 2000 متر قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

A study on the geothermal reservoirs in Mahallat area, Markazi Province by 1D and 2D inversion of the magnetotelluric data

نویسندگان [English]

  • Behrouz Oskooi 1
  • Behnam Mohamadi 1
  • Mahmoud Mirzaei 2
چکیده [English]

Magnetotelluric (MT) method is an important passive surface geophysical method which uses the Earth’s natural electromagnetic fields to investigate the electrical resistivity structure of the subsurface. In thermal areas, the electrical resistivity is substantially of a different form and generally lower than in areas with colder subsurface temperatures. The selected MT profile in the region crosses over the hydrothermally altered zones and different geological structures. Reflection and refraction of EM signals at both horizontal and vertical interfaces separates the media of different electrical parameters. Electromagnetic methods have been developed and employed to recognize the geological features and particularly fault zones in many regions. To achieve a higher lateral resolution and also greater depth penetration, the MT method is one of the most effective  electromagnetic techniques to imagine the subsurface structures electrically. For subsurface mapping purposes, the long period natural-field MT method proved to be very useful. The MT method, due to a high penetration depth, is one of the most effective electromagnetic methods to recognize deep geothermal systems.
In this study, the geothermal reservoirs were conducted using Magnetotelluric (MT) data. Mahallat in MarkaziProvince was chosen as the case study area and the MT survey was carried out at 17 sites with a 500-meter distance between stations using GMS05 (Metronix, Germany) systems. Three magnetometers and two pairs of non-polarizable electrodes were connected to this five-channel data logger. The experimental setup included four electrodes distributed at a distance of 100 m in north–south (Ex) and east–west (Ey) directions.
Measurements of the horizontal components of the natural electromagnetic field were used to construct the full complex impedance tensor, Z, as a function of frequency.  Using the effective impedance, determinant apparent resistivities and phases were computed and used for the inversion. The MT data were processed using a code from Smirnov (2003) aiming at a robust single site estimate of electromagnetic transfer functions. As the area of the study was populated and close to electric noise sources and travertine mines, the recorded data did not have a good quality to justify the low coherency between the electric and magnetic channels. Since it was assumed that the earth structure was largely 2D for the purpose of a 2D inversion, the 3D structure would appear in the data as noise. We performed a 1D inversion of the determinant data using a code from Pedersen (2004) for all sites. The 2D modeling was applied to the data to explain the data if their responses fitted the measured data within their errors. Generally, the better the fit between measured and predicted data, the better the model resolution. The 2D inversion of the TE-,TM-,TE+TM and DET-mode data using a code from Siripunvaraporn and Egbert (2000) were performed. The data were calculated as apparent resistivities and phases. Apparent resistivity and phase data exhibited fairly different characteristics in the TE- and TM-modes.  The determinant provides a useful average of the impedance for all current directions. Since the quality of the determinant data was acceptable, 2D modeling of the determinant data would be expected to provide a more reasonable approximation of the true subsurface structure. Therefore, we used the model obtained from the DET-mode data as an interpretation model. The resistivity model obtained from the DET-mode is consistent with the geological model of the Mahallat region down to two kilometers. From surface down to about 400 m depth, there is a conductive layer (<30 ohm-m) showing a variable thickness along the profile, which is hydrogeologically interpreted as the penetrated zone for water. The surface was covered by clay and sand making it a good condition for keeping water. The conductive zone located in the middle part of the profile was interpreted as a geothermal reservoir that its estimated depth ranged from 800 m down to 2000 m. The conductive zone was hidden under the Quaternary alluviums and travertine stones along the profile.

کلیدواژه‌ها [English]

  • electromagnetic
  • processing
  • Geothermal
  • Magnetotelluric
  • Inversion
Cagniard, L., 1953, Basic theory of the magnetotelluric method in geophysical prospecting: Geophysics, 8, 605-635.
Cantwell, T., and Madden, T. R., 1960, Preliminary report on crustal magnetotelluric measurements: Geophysics, 65(12), 4202-4205.
Correia, A., and Safanda, J., 2002, Geothermal modeling along a two-dimensional crustal profile in southern Portugal. J: Geodyn, 34, 47-61.
Johnston, J. M., Pellerin, L., and Hohmann, G. W., 1992, Evaluation of electromagnetic methods for geothermal reservoir detection: Geothermal Resource Council Transactions, 16, 241-245.
Li, X., and Pedersen, L. B., 1991, The electromagnetic response of an azimuthally anisotropic half space: Geophysics, 56, 1462-1473.
Long, C. L., and Kaufman, H. E., 1980, Reconnaissance geophysics of a known geothermal resource area, Weiser, Idaho, and Vale, Oregon: Geophysics, 45,312-322.
Orange, A. S., 1989, Magnetotelluric exploration for hydrocarbons: Proc. IEEE, 77, February.
Oskooi, B., Pedersen, L. B., and Smirnov, M., 2002, The DGP Working Group, Deep geothermal prospecting in Iceland: The 16th Workshop on Electromagnetic Induction in the Earth, Santa Fe, New Mexico.
Oskooi, B., 2004, A broad view on the interpretation of electromagnetic data (VLF, RMT, MT, CSTMT): PhD Thesis, Uppsala University, Sweden.
Oskooi, B., Pedersen, L. B., Smirnov, M., Arnasson, K., Esteinsson, H., and Manzella, A., and the DGP working group, 2005, The deep geothermal structure of The Mid-Atantic Rige deduced from MT data in SW Iceland: Physics of the Earth and Planetary Interiors, 150, 183-195.
Pedersen, L. B., 2004, Determination of the regularization level of truncated singular-value decomposition inversion: The case of 1D inversion of MT data: Geophys. Prospect, 52, 261-270.
Pedersen, L. B., and Engels, M., 2005, Routine 2D inversion of magnetotelluric data using the determinant of the impedance tensor: Geophysics, 70, G33-G41.
Siripunvaraporn, W., Egbert, G., 2000, An efficient data-subspace inversion method for 2-D magnetotelluric data: Geophysics, 65, 791-803.
Smirnov, M. Yu., 2003, Magnetotelluric data processing with a robust statistical procedure having a high breakdown point: Geophysics. J. Int, 152, 1-7.
Smith, L., 2001, Analysis of controlled-source magnetotelluric data from deep geothermal resources in Iceland: M. Sc. Thesis, Department of Geology and Geophysics, University of Edinburgh.
Swift, C. M., 1967, A magnetotelluric investigation of electrical conductivity anomaly in the southwestern United States: PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA.
Tikhonov A. N., 1950, On determining electrical characteristics of the deep layers of the Earth’s crust: Doklady, 73, 281-285.
Volpi, G., Manzella, A., Fiordelisi, A., 2003, Investigation of geothermal structures by  magnetotellurics (MT): An  example  from  the Mt. Amiata area, Italy: Geothermics, 32, 131-145.
Vozoff, K., 1991, The magnetotelluric method, in Electromagnetic methods in applied geophysics: M. N. Nabighian, Ed., Society of Exploration Geophysicists, Tulsa, Oklahoma, 2(B), 641-711.
Wannamaker, P.E., 1986. Electrical conductivity of water-undersuturated crustal melting: J Geophys. Res. 91(B6), 6321-6327.