# مدل‌سازی غیرخطی داده‌‌های گرانی با استفاده از عمق‌‌های برآورد شده از همه مقادیر sبرای هر فاکتور شکل

نویسندگان

چکیده

الگوریتم جدیدی برای برآورد عمق و پارامتر‌‌های مدل فرضی (ضریب دامنه) یک جسم بی‌‌هنجار با استفاده از همه داده‌‌های اندازه‌گیری شده گرانیبیان شده است. ضریب دامنه شامل پارامترهای هندسی و فیزیکی بوده و به همراه عمق می تواند دید کاملی از وضعیت هندسی و فیزیکی بی­هنجاری زیر زمینی در اختیار مفسر بگذارد.مسئله برآورد عمق از داده مشاهده شده به یک معادله غیرخطی  F(z)=0تبدیل شده است (عیسی، 2011). این معادله را می­توان برایعمقzبا کمینه کردن یک تابع هدف به روش کمترین مربعات با روش های تکرار استاندارد حل کرد. با استفاده از عمق برآورد شده، ضریب دامنه نیز قابل محاسبه است. روش بر پایه تعیین مجذور میانگین ریشه (کمترین مربعات) از عمق‌‌های برآورد شده با استفاده از همه مقادیر sبرای هر فاکتور شکل است. کمینه مقدار کمترین مربعات به منزله معیاری برای برآورد شکل صحیح و عمق ساختار مدفون به کاربرده می‌‌شود. وقتی فاکتور شکل صحیح به کار برده شود، کمترین مربعات عمق‌‌ها همیشه کمتر از کمترین مربعات محاسبه شده از فاکتورهای شکل نادرست است. تقریب پیشنهادی برای مجموعه‌‌ای از اجسام بی‌‌هنجاری با شکل هندسی ساده قابل استفاده است. روش کمترین مربعات به صورت کاملا محاسباتی و پیشرو برای داده های نیم­رُخی قابل اعمال می باشد. بنابر این بایستی قبل از به کار بردن روش، داده های گرانی در امتداد یک نیم­رُخ که از دامنه بیشینه اثر گرانی آن میگذرد در نظر گرفته شوند. این روش برای مدل‌های مصنوعی مانند  استوانه قائم نامتناهی، استوانه افقی و کره برای به دست آوردن پارامتر های مجهول هندسی مانند شکل، عمق و فیزیکی مانند تباین چگالی به کار برده شده است. این شکل­های هندسی می توانند درصد بالایی از بی­هنجاری­های زیر سطحی را همانند سازی کنند. همچنین برای داده های مصنوعی آغشته به نوفه نیز از روش مذکور استفاده شده است.این روش به‌طور موفقیت‌‌آمیزی برای داده واقعی مربوط به اکتشاف باریت در منطقه استان فارس نزدیک شهر آباده به کار رفته است.  پارامتر های به دست آمده حاصل از روش معرفی شده در این مقاله در مقایسه با نتایج حاصل از روش اویلر برای عمق و همچنین نتایج حاصل از حفاری هماهنگی خوبی را نشان می دهد.

کلیدواژه‌ها

عنوان مقاله [English]

### The nonlinear modelling ofÂ  gravity data using estimated depths from all s-values for each shape factor

نویسندگان [English]

• Marzie Valieghbal
چکیده [English]

An inversion algorithm was developed to estimate the depth and the associated model parameters of the anomalous bodies from the gravity measured data (Essa, 2011) .
Â Â Â  These parameters including geometrical and physical ones are defind as the amplitude coefficientÂ  and will be estimated through the method which is definedÂ  in this paper. One of the most important parameters is the depth of the causative bodies.
Â Â Â  The problem of depth (z) estimation from the observed data was transformed into a nonlinear equation of the formF(z) = 0. This equation was then solved for z by minimizing an objective functional in the least-squares sense through standard iterative methods. These standard iterative methods can solve the problem very readily and in the shortest time. However other numerical methods can also be used for solving the equation and the more accurate metod gives more precise results. Therefore solving the nonlinear equation is a vital step in obtaining the more precise results.Â
Â Â Â  Using the estimated depth, the amplitude coefficient was computed from the measured gravity data. The method was based on determining the root mean square (RMS) of the depths estimated by using all s-values for each shape factor. The primary shape factors for these simple geometrical shapes are defines as the a priori information and are assumed known before the process. The minimum RMS was used as a criterion for estimating the correct shape and depth of the buried structure. When the correct shape factor was used, the RMS of the depths isÂ  less than the RMS computed using wrong shape factors. These correct shape factors are actually estimated through the method and are different from the prior ones and reflect the closest shape to the real shape of the subsurface anomaly.
Â Â Â  In other words, the RMS of the correct shape factor is the least one.The proposed approach was applicable to a class of geometrically simple anomalous bodies, such as the semi-infinite vertical cylinder, the horizontal cylinder and the sphere which can simulate the shape of the most causative bodies. The methodÂ  is tested for synthetic models with and without random noise. The method gives precise results for synthetic models contaminated by 5 to 10 per cent random noise which is quite acceptable and promising.
Â Â Â  This technique was also successfully applied to real data for mineral exploration. The applied real data belongs to an area with hilly topography located in the Fars Province close to the Abadeh city where the barite deposite is under exploration.
Â Â Â  The method is used for a profile of real data that is provided from the residual anomalies and passed from the main detected positive anomaly in the area. It was found that the estimated depths and the associated model parametrers were in good agreement with the results obtained through Euler method and drilling.
Â Â Â  The simple equations of the method and the precise results show its usefulness forÂ  obtaining the unknown parameters of causative bodies in gravity data interpretation.Therefore, the method is quite promising in obtaining the unknowmn parameters for different causative bodies and specially in cases that the shape of the anomaly is close to sphere and cylinder . This is usually the case in ore bodies detection and delineation.

کلیدواژه‌ها [English]

• Gravity interpretation
• least-squres method
• RMS
• simple geometric bodies
• depth and associated model parameters estimation