ارزیابی تعیین بعُد ساختار­های ژئوالکتریک زیرسطحی و مدل­سازی وارون یک و دوبُعدی داده­های مگنتوتلوریک منطقه زمین‌گرمایی شمال غرب سبلان

نویسندگان

1 دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود

2 بخش انرژی زمینگرمایی، سازمان انرژیهای نو، وزارت نیرو

چکیده

مگنتوتلوریک یکی از روش‌های اکتشاف ژئوفیزیکی است که از ثبت هم‌زمان میدان‌های طبیعی مغناطیسی و الکتریکی القایی در زمین استفاده می‌کند. ازآنجاکه این روش از سیگنال‌های الکترومغناطیسی طبیعی با بازه وسیع بسامدی بهره می‌گیرد عمق اکتشاف آن از چند ده متر تا چندین کیلومتر تغییر می‌کند. در تحقیق حاضر تلاش می‌‌شود تا با بهره‌گیری از پارامترهای ابعادی متفاوتی مثل چولگی،  بیضی‌وارگی،چولگی حساس به فاز،و شاخص‌های وزنی D1D2D3، بعُد ساختار‌های ژئوالکتریک زیرسطحی به کمک داده‌‌های مگنتوتلوریک شمال غرب سبلان تعیین شود. در ادامه سعی خواهد شد تا با مدل‌سازی یک‌بعدیو دوبُعدی داده‌‌های فاز و مقاومت ویژه ظاهری چندین سونداژ مگنتوتلوریک واقع بر یک نیم‌رُخ واقع در دره مویل، محل قرارگیری منبع زمین‌گرمایی احتمالی منطقه تعیین شود. نتایج تحلیل پارامتر‌های ابعادی نشان می‌‌دهد که ساختار زمین‌شناسی و ژئوالکتریکی منطقه برای دور‌های زمانی کمتر از 1 ثانیه (معادل اعماق کم تا متوسط) یک‌بُعدی و در دور‌های زمانی بیشتر از آن (اعماق زیاد) اغلب دوبُعدی است. همچنین نتایج حاصل از مدل‌سازی یک‌ بعدیو دوبُعدی داده‌‌های سونداژ‌‌های مگنتوتلوریک و تفسیر آنها همراه با نتایج حفاری موجود گویای آن است که لایه‌های موجود در اعماق کمتر از 1000 متری با مقاومت ویژه کمتر از 40 اُهم‌‌متر را می‌توان به سنگ‌پوش رُسی که در بالای منبع زمین‌گرمایی قرار گرفته است نسبت داد. در زیر این پوشش رُسی طبقات سنگی با مقاومت ویژه بین 40 تا 100 اُهم‌متر قرار دارند که می‌توان آن را به منزلة سنگ مخزن منبع زمین‌گرمایی احتمالی منطقه تفسیر کرد.

کلیدواژه‌ها


عنوان مقاله [English]

An assessment of the dimensionality of subsurface geoelectric structures and 1-D and 2-D inverse modelling of magnetotelluric data in NW of Sabalan geothermal region

نویسندگان [English]

  • Allahyar Khojamli 1
  • Ali Moradzadeh 1
  • Faramarz Doulati Ardejani 1
  • Mohammad Reza Rahmani 2
  • Soheil Porkhial 2
1
2
چکیده [English]

Magnetotelluric (MT) is a geophysical exploration method that utilizes simultaneous measurements of naturally occurring magnetic and electric fields. As this method utilizes natural electromagnetic (EM) signals with a wide frequency range, its exploration depth is from several meters to several kilometers. Depending on its frequency, it is used for petroleum, groundwater, geothermal, mineral, and geotechnical explorations. To determine electrical variation of a subsurface structure using the MT survey, five components of electric and magnetic field variation are measured on the earth’s surface in each measuring site. The two components of the horizontal electric field (Ex and Ey) and also two horizontal components of the magnetic field (Hx and Hy) are normally measured in the north-south (x) and east-west (y) directions. An extra measurement of the vertical component of the magnetic field (Hz) is sometime measured in each measuring site. The relationship between the electric and magnetic fields at the earth’s surface can be written as  where, and is the complex impedance tensor of order 22. When the resistivity of the earth is a function of depth (i.e. in a one-dimensional earth), the diagonal elements of impedance tensor (Z) are equal to zero and its off-diagonal elements are equal in amplitude but opposite in signs. In two-dimensional (2-D) structures where resistivity is invariant in the strike direction, diagonal terms become zero if the EM fields are defined in a coordinate system normal to the strike of the structure. In such cases, the impedance component of the electric field which is parallel to strike (i.e. transverse electric (TE) mode) would be different from those components of the electric field perpendicular to the strike (i.e. the transverse magnetic (TM) mode). In the case of 2-D structures, if the impedance is measured in an arbitrary orientation, the angle required to rotate the measurements into TE and TM modes can be determined from the impedance tensor. In the case of the three-dimensional (3-D) earth, the entire components of Z would be non-zero. Presently, most of the MT survey is performed as electrical sounding and the measured data is then modeled and interpreted to sense the details of the subsurface structure. To provide a reasonable and physically meaningful model of the subsurface structure, its dimension must be determined somehow. To determine the dimensionality of the subsurface structure using MT data, several parameters such as conventional skew, ellipticity and polar diagrams of the impedance tensor elements are used in practice. As these parameters are very sensitive to the noise of data, the phase sensitive skew and some dimensionality indices were defined. In this study, it was attempted to use various parameters such as conventional skew, ellipticity and phase sensitive skew along with dimensionality weighting indices (D1, D2, D3) to determine the structural dimension of the Sabalan geothermal field in the NW of Iran using MT data. It was also attempted to model the MT data of several sites along a profile located in Moil valley in the NW of Sabalan in order to determine any possible location of the geothermal reservoirs.   The obtained results indicated that the structure up to the medium depth was 1-D and the deepest structure was 2-D. As the subsurface structure of the area was 1-D at periods lower than 1 second, the averaged data of both TE and TM modes were first inverted one-dimensionally using the WinGlink software to explore and delineate the locations of any geothermal reservoirs likely to be present in the study area. The inversion results illustrated a layered structure located from the ground surface to the depth level of 1500 meters above the sea level (m.a.s.l) which in turn confirmed the shallow depth structures were 1-D. The results also showed a highly conductive layer, with resistivity lower than 40 Ω.m located beneath the MT stations of 24 to 244. The results of drilling revealed that this conductive zone could be interpreted as a clay cap over the geothermal reservoir which elongates to an approximate depth of 1000 meter. This clay zone overlays a more resistive zone, with resistivity values from 40 to 100 Ω.m, which in turn can be interpreted as a geothermal reservoir. The data from a 2-D joint inversion of the TE and TM modes confirmed the results of the 1-D inversion of the MT data for shallow to intermediate depths. It further delineated that the location of the geothermal reservoir was at a depth zone of 500-1500 m.a.s.l. under the sounding location of 7-245 in the south to south eastern part of the study area.

کلیدواژه‌ها [English]

  • Magnetotelluric
  • geothermal resource
  • dimensionality parameters
  • 1-D and 2-D modeling
  • reservoir rock
نقی‌زاده، م.، 1382، کاربرد روش مگنتوتلوریک در اکتشاف ذخایر ژئوترمال منطقه خوی: پایان‌نامه کارشناسی ارشد، مؤسسه ژئوفیزیک، دانشگاه تهران.
Anderson, E., Crosby, D., and Ussher, G., 2000, Bulls-eye! – simple resistivity imaging to reliably locate the geothermal reservoir: Proc. World Geothermal Congress, KyushuTohoku, Japan, 909–914.
Arnason, K., Karlsdottir, R., Eysteinsson, H., Flovenz, O.G., and Gudlaugsson, S.T., 2000, The Resistivity Structure of HighTemperature Geothermal Systems in Iceland: Geothermal Congress, Kyushu-Tohoku, Japan, 923–928.
Bahr, K., 1988, Interpretation of the magnetotelluric impedance tensor: Regional induction and local telluric distortion: Geophysics, 62, 119–127.
Beamish, D., 1986, Geoelectric structural dimensions from Magnetotelluric data: Methods of estimation, old and new: Geophysics, 51, 1298-1309.
Cagniard, L., 1953, Basic theory of magnetotelluric method of geophysical prospecting: Geophysics, 18, 605–635.
Constable, S.C., Parker, R.L., and Constable, C.G., 1987, Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 52, 289–300.
deGroot -Hedlin, C., 1995, Inversion for regional 2-D resistivity structure in the presence of galvanic scatteres: Geophys. J. Int., 122, 877– 888.
EDC (Energy Development Corporation), 2008, 2007 MT Survey of NW Sabalan Geothermal Project: Report submitted to SUNA, 19.
EDC (Energy Development Corporation), 2010. 2009 MT Survey at NW Sabalan Geothermal Project, NW Iran: Report submitted to SUNA, 33 pp.
Geosystem SRL., 2003, A guide for using WinGLink software, ver.2. 1. 1.
Hermance, J.F., 1982, The asymptotic response of three-dimensional basin effects to magnetotelluric field at long period: The effects of current channeling: Geophysics, 47, 1562–1573.
Johnston, J. M., Pellerin, L., and Hohmann, G. W., 1992, Evaluation of electromagnetic methods for geothermal reservoir detection: Geothermal Resources Council Transactions, 16, 241–245.
Kao, D., and Orr, D., 1982, Magnetotelluric studies in the Market Weighton area of eastern England: Geophys. J. Roy. Astr. Soc., 70, 323-337.
Kaufman, A. A., and Keller, G.V., 1981, The Magnetotelluric sounding method: Elsevier scientific publishing company, Amsterdam, 595 pp.
Kingston Morrison, 1998, Sabalan geothermal project: Review of existing data: Report No. 2505-RPT-GE-003, Revision 0, Internal report prepared for SUNA.
Kingston Morrison, 1999, Sabalan Geothermal Project, Stage 1 - Surface Exploration: Volume 1, Report on Geophysical Survey. 2505-RPT-GE-016.
Lezaeta, P., 2001, Distortion Analysis and 3-D Modeling of Magnetotelluric Data in the Southern Central Andes: Ph.D. Thesis, Berlin Free University.
Meju, M. A., 2001, Geophysical data analysis: Understanding inverse problem theory and practice: Course notes series No. 6, Society of Exploration Geophysicists.
Moradzadeh, A., 2003, Using of tipper function to map subsurface conductivity structures in Magnetotelluric (MT) surveys: 21st Geoscience Conference and Exposition. Tehran.
Moradzadeh, A., 1998, Electrical Imaging of the Adelide Geosyncline Using Magnetotelluric (MT): Ph.D. Thesis, Flinders University of south Australia, 334 pp.
Noorollahi, Y., Itoi, R., Fujii, H., and Tanaka, T., 2008, GIS integration model for geothermal exploration and well siting: Geothermics, 37, 107–131.
Oskooi, B., Pedersen, L. B., Smirnov, M., Arnason, K., Eysteinsson, H., and Manzella, A., 2005, The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW Iceland: Earth Planet Inter., 150, 183– 195.
Park, S.K. and Livelybrooks, D.W., 1989, Quantitative interpretation of rotationally invariant parameters in magnetotellurics: Geophysics, 54, 1483–1490.
Reddy, I. K., Rankin, D., and Phillips, R. J., 1977, Three-dimensional modelling in magnetotelluric and magnetic variational sounding: Geophys. J. Roy. Astr. Soc., 51, 313–325.
Rodi, W. and Mackie, R.L., 2001, Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion: Geophysics, 66, 174–187.
Sinclair Knight Merz, (SKM), 2003, NW Sabalan Geothermal Project, MT survey re-analysis: Report submitted to SUNA Renewable Energy Organization of Iran.
Spichak, V. V., Manzella, A., 2009, Electromagnetic sounding of geothermal zones: J. Appl. Geophys, 68, 459–478.
Suharno, S., Browne, P. R. L., Soengkono, S., and Sudarman, S., 2000, A geophysical model and the subsurface geology at the Ulubelu geothermal area, Lampung, Indonesia: Abstract. AAPG Bulletin, 84, 1498.
Swift, C. M., 1967, A Magnetotelluric Investigation of an Electrical Conductivity Anomaly in the Southwestern of United States: Ph.D. Thesis, Mass. Inst. Tech.
Talebi, B., Khosrawi, K., and Ussher, G. H., 2005, Review of Resistivity Surveys from the NW Sabalan Geothermal Field, Iran: Proceedings, 2005 World Geothermal Congress, Antalya, Turkey.
Tikonov, A. N., 1950, On determining electrical characteristics of the deep layers of the earth’s crust: Dokl. Akad. Nauk Rus, 73, 281–285.
Ting, S.C., and Hohmann, G.W., 1981, Integral equation modeling of three-dimensional magnetotelluric response: Geophysics, 46, 182–197.
Vozoff, K., 1972, The magnetotelluric method in the exploration of sedimentary basins: Geophysics, 36, 98–141.
Vozoff, K., 1991, The magnetotelluric method, in Nabighian, M.N., (Ed), Electromagnetic Methods in applied Geophysics: Tulsa, Okla, Society of Exploration Geophysicists, 641– 712.
Word, D. R., Smith, H. W., and Bostick, F. X. J., 1970, An investigation of the magnetotelluric tensor impedance method: EGRL tech. rep. no. 82, Univ. of Texas, Austin.
Wright, P., Ward, S., Ross, H., and West, R., 1985, State-of-the-art geophysical exploration
for geothermal resources: Geophysics, 50, 2666–2699.
Yang, K., Browne, P. R. L., Huntington, J. F., and Walshe, J. L., 2001, Characterising the hydrothermal alteration of the BroadlandsOhaaki geothermal system, New Zealand, using short-wave infrared spectroscopy: J. Volcanol. Geotherm. Res., 106, 53–65.