• صفحه اصلی
  • مرور
    • شماره جاری
    • بر اساس شماره‌های نشریه
    • بر اساس نویسندگان
    • بر اساس موضوعات
    • نمایه نویسندگان
    • نمایه کلیدواژه ها
  • اطلاعات نشریه
    • درباره نشریه
    • اهداف و چشم انداز
    • اعضای هیات تحریریه
    • همکاران دفتر نشریه
    • اصول اخلاقی انتشار مقاله
    • بانک ها و نمایه نامه ها
    • پیوندهای مفید
    • پرسش‌های متداول
    • فرایند پذیرش مقالات
    • اخبار و اعلانات
  • راهنمای نویسندگان
  • ارسال مقاله
  • داوران
  • تماس با ما
 
  • ورود به سامانه ▼
    • ورود به سامانه
    • ثبت نام در سامانه
  • English
صفحه اصلی فهرست مقالات مشخصات مقاله
  • ذخیره رکوردها
  • |
  • نسخه قابل چاپ
  • |
  • توصیه به دوستان
  • |
  • ارجاع به این مقاله ارجاع به مقاله
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • اشتراک گذاری اشتراک گذاری
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
مجله ژئوفیزیک ایران
مقالات آماده انتشار
شماره جاری
شماره‌های پیشین نشریه
دوره دوره 11 (1396)
دوره دوره 10 (1395)
دوره دوره 9 (1394)
شماره شماره 5
شماره شماره 4
شماره شماره 3
شماره شماره 2
شماره شماره 1
دوره دوره 8 (1393)
دوره دوره 7 (1392)
دوره دوره 6 (1391)
دوره دوره 5 (1390)
دوره دوره 4 (1389)
دوره دوره 3 (1388)
دوره دوره 2 (1387)
دوره دوره 1 (1386)
Sadeghi, Mehdi, Roshandel Kahoo, Amin, Siahkoohi, Hamid Reza, Nikoo, Azita. (1394). Detecting buried channels using linear least square RGB color stacking method based on deconvolutive short time Fourier transform. مجله ژئوفیزیک ایران, 9(5), 104-112.
Mehdi Sadeghi; Amin Roshandel Kahoo; Hamid Reza Siahkoohi; Azita Nikoo. "Detecting buried channels using linear least square RGB color stacking method based on deconvolutive short time Fourier transform". مجله ژئوفیزیک ایران, 9, 5, 1394, 104-112.
Sadeghi, Mehdi, Roshandel Kahoo, Amin, Siahkoohi, Hamid Reza, Nikoo, Azita. (1394). 'Detecting buried channels using linear least square RGB color stacking method based on deconvolutive short time Fourier transform', مجله ژئوفیزیک ایران, 9(5), pp. 104-112.
Sadeghi, Mehdi, Roshandel Kahoo, Amin, Siahkoohi, Hamid Reza, Nikoo, Azita. Detecting buried channels using linear least square RGB color stacking method based on deconvolutive short time Fourier transform. مجله ژئوفیزیک ایران, 1394; 9(5): 104-112.

Detecting buried channels using linear least square RGB color stacking method based on deconvolutive short time Fourier transform

مقاله 10، دوره 9، شماره 5، زمستان 1394، صفحه 104-112  XML اصل مقاله (1199 K)
نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)
نویسندگان
Mehdi Sadeghi1؛ Amin Roshandel Kahoo* 2؛ Hamid Reza Siahkoohi1؛ Azita Nikoo2
1Institute of Geophysics, University of Tehran, Tehran, Iran
2School of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده
Buried channels are one of the stratigraphic hydrocarbon traps. They are often filled with a variety of porous and permeable sediments so they are important in the exploration of oil and gas reservoirs. In reflection seismic data, high-frequency components are sensitive to the channel thickness, whereas, low-frequency components are sensitive to the channel infill materials. Therefore, decomposition of seismic data to its spectral components provides useful information about both thickness and infill materials of buried channels.A 4D spectral data is produced by applying spectral decomposition to a 3D seismic data cube which is decomposed into several single frequency 3D cubes. Since different frequencies carry different types of information, each single frequency cube cannot show all subsurface information simultaneously. Therefore, we used color stacking method and constructed RGB plots, which represent more information than single frequency volumes. In this paper, we applied three methods of Deconvolutive Short Time Fourier Transform (DSTFT), S Transform (ST) and Short Time Fourier Transform (STFT) to a land seismic data from an oil field in the south-west of Iran. We used the resulting spectral volumes to create RGB color stacking plots for tracing buried channels. According to the results, the RGB plots based on the DSTFT method revealed more details than the ST and STFT methods.
کلیدواژه‌ها
Buried channels؛ spectral decomposition؛ deconvolutive short time Fourier transform؛ color stacking method
عنوان مقاله [English]
Detecting buried channels using linear least square RGB color stacking method based on deconvolutive short time Fourier transform
نویسندگان [English]
Mehdi Sadeghi1؛ Amin Roshandel Kahoo2؛ Hamid Reza Siahkoohi1؛ Azita Nikoo2
چکیده [English]
Buried channels are one of the stratigraphic hydrocarbon traps. They are often filled with a variety of porous and permeable sediments so they are important in the exploration of oil and gas reservoirs. In reflection seismic data, high-frequency components are sensitive to the channel thickness, whereas, low-frequency components are sensitive to the channel infill materials. Therefore, decomposition of seismic data to its spectral components provides useful information about both thickness and infill materials of buried channels.A 4D spectral data is produced by applying spectral decomposition to a 3D seismic data cube which is decomposed into several single frequency 3D cubes. Since different frequencies carry different types of information, each single frequency cube cannot show all subsurface information simultaneously. Therefore, we used color stacking method and constructed RGB plots, which represent more information than single frequency volumes. In this paper, we applied three methods of Deconvolutive Short Time Fourier Transform (DSTFT), S Transform (ST) and Short Time Fourier Transform (STFT) to a land seismic data from an oil field in the south-west of Iran. We used the resulting spectral volumes to create RGB color stacking plots for tracing buried channels. According to the results, the RGB plots based on the DSTFT method revealed more details than the ST and STFT methods.
کلیدواژه‌ها [English]
Buried channels, spectral decomposition, deconvolutive short time Fourier transform, color stacking method
مراجع

Auger, F., Flandrin, P., Goncalves, P., and Lemoine, O., 1996, Time-frequency toolbox for use with MATLAB, CNRS, France.

Bahorich, M., A.Motsch, K. Laughlin, and G. Partyka, 2002, Amplitude responses image reservoir: accessed February 20, 2008.

Boashash, B., 2003, Time frequency signal analysis: A comprehensive reference, Elsevier, Oxford, UK.

Fahmy, W. A., G. Matteucci, D. Butters, J. Zhang, and J. Castagna, 2005, Successful application of spectral decomposition technology toward drilling of a key offshore development well: 75th Annual International Meeting, SEG, Expanded Abstracts, 262–264.

Gabor, D., 1946, Theory of communication: Journal of the Institution of Electrical Engineering, 93, 429-457.

Guo, H., K. J. Marfurt and J. Liu, 2009, Principal component spectral analysis: Geophysics, 74, 35 – 43.

Guo, H.,K. J.Marfurt, J. Liu, and Q. Dou, 2006, Principal components analysis of spectral components: 76th Annual International Meeting, SEG, ExpandedAbstracts, 988–992.

H, Sattari., A, Gholami., H. R. Siahkoohi., 2013, Sparsity based short-time Fourier transform and applications in thin bed characterization: Iranian Journal of geophysics, 7-3, 36-48.

Li, D., and Castagna, J., 2013, Modified S-transform in time-frequency analysis of seismic data: SEG Technical Program Expanded Abstracts 2013: pp. 4629-4634.

Liu, J., and K. J. Marfurt, 2007a, Instantaneous spectral attributes to detect channels: Geophysics, 72, 23–31.

Liu, J., and K. J. Marfurt, 2007b, Multicolor display of spectral attributes: The Leading Edge, 26, 268–271.

Lu, W., and Li, F., 2013, Seismic spectral decomposition using deconvolutive short-time Fourier transform spectrogram: GEOPHYSICS, 78(2), V43-V51.

Mallat, S., 1999, A wavelet tour of signal processing, 2nd edition, Elsevier, USA.

Nikoo, A., Roshandel kahoo, A., Nejati kalatah, A., and Hassanpor, H., 2012, Buried channel detection using reduced interference distribution: International Geophysical Conference and Oil & Gas Exhibition, Istanbul, Turkey, 17-19 September 2012.

Onstott. Gregory E, Backus. Milo M,Wilson. Clark R,  Phillips. J. D, 1984, Color display of offset dependent reflectivity in seismic data: SEG Expanded Abstracts 3, 674.

Qiang, Z., and Wen-kai, L., 2010, Spectral decomposition using deconvolutive short time Fourier transform spectrogram: 80th Annual International Meeting, SEG, Expanded Abstracts, 1581–1585.

Roshandel Kahoo, A., Nejati kalatah, A., 2011, High resolution spectral decomposition and its application in the illumination of low-frequency shadows of a gas reservoir: Iranian Journal of geophysics, 6-1, 61-68.

Sadeghi, M., Roshandel Kahoo, A., Siahkoohi, H. R., and Heidarian, A. R., 2012, Demonstrating buried channels using (RGB) color stack method: Iranian Journal of geophysics, 6, 62-72.

Sadeghi, M., Roshandel Kahoo, A., Siahkoohi, H. R., and Heidarian, A. R., 2013, Demonstrating buried channels using principal component analysis: Earth and Space Physics, Institute of geophysics, Tehran University, 40, 45-56.

Stark, T. J., 2005, Anomaly detection and visualization using color-stack, cross-plot, and anomalousness volumes: 75th Annual International Meeting, SEG, Expanded Abstracts, 763–766.

Statistics Toolbox © COPYRIGHT 1993–2006 by the MathWorks, Inc.

Stockwell, R. G., Mansinha, L., and Lowe, R. P., 1996, Localization of the complex spectrum: The S transform: IEEE Trans. Signal Process., 44, 998–1001.

Theophanis, S., and J. Queen, 2000, Color display of the localized spectrum: Geophysics, 65, 1330–1340.

Ville, J., 1948, Theorie et applications de la notion de signal analytique: Cables et Transm, 2A(1), 61-74.

Wigner, E. P., 1932, On the quantum correlation for thermodynamic equilibrium: Phys. Rev., 40, 749-759.

Zarei, M., Roshandel Kahoo, A., and Siahkoohi, H. R., 2012, Gas detection using deconvolutive short time Fourier transform: International Geophysical Conference and Oil & Gas Exhibition, Istanbul, Turkey, 17-19 September 2012.

آمار
تعداد مشاهده مقاله: 442
تعداد دریافت فایل اصل مقاله: 499
صفحه اصلی | واژه نامه اختصاصی | اخبار و اعلانات | اهداف و چشم انداز | نقشه سایت
ابتدای صفحه ابتدای صفحه

Journal Management System. Designed by sinaweb.