تعیین رخساره‌‌‌‌های سنگی با استفاده از خوشه‌سازی براساس نمودار با تفکیک‌پذیری چندتایی (MRGC) نمودار‌‌های پتروفیزیکی چاه: بررسی یکی از میدان‌‌‌های خلیج فارس

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 شرکت ملی مناطق نفت خیز جنوب، اهواز، ایران

2 دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

3 موسسه ژئوفیزیک دانشگاه تهران، ایران

4 پژوهشگاه صنعت نفت، تهران، ایران

چکیده

میدان مورد بررسی در این پژوهش، یکی از بزرگ‌‌ترین میدان‌‌‌‌های گازی جهان است که در خلیج فارس قرار دارد. ازآنجاکه سنگ مخزن این میدان کربنات نامتجانس است، تعیین رخساره‌‌‌‌های سنگی آن می‌‌تواند راه‌‌حلی کارآمد برای طبقه‌بندی‌ رخساره‌‌‌‌های مخزن در جهت تعیین خواص پتروفیزیکی سنگ مخزن، مدل‌سازی مخزن و تفکیک کردن مناطقی که پتانسیل بالاتری برای تولید نفت دارند از مناطق کم‌‌پتانسیل باشد .دقیق‌‌ترین روش تعیین رخساره استفاده از مغزه است اما مغزه‌گیری بسیار گران و وقت‌گیر است و به‌صورت محدود در برخی چاه‌‌ها قابل دسترسی است. بنابراین در این تحقیق بر تعیین رخساره سنگی با استفاده از داده‌‌‌‌های نمودار‌‌های چاه پرداخته شده است. در این راستا روش خوشه‌سازی براساس نمودار با تفکیک‌پذیری چندتایی (MRGC) که روشی براساس روش  ناپارامتری K- امین همسایه نزدیک و نمایش نموداری داده است، بر روی نمودار‌‌های صوتی، تخلخل نوترون، چگالی و پرتو گاما اِعمال شده تا رخساره الکتریکی معادل رخساره سنگی به‌دست آمده از مغزه، بازسازی شود. خوشه‌‌‌‌های روش MRGC از مدلی که دارای خواص مشخص وابسته به گروهی از رخساره‌‌‌‌های سنگی است، تعریف می‌‌شود. گروه‌‌‌‌های رخساره‌‌‌‌های کوچک با استفاده از شاخص همسایگی برای تعیین جاذبه همسایة نزدیک kاُم برای هر نقطه، شکل می‌‌گیرند. درنهایت خوشه‌‌‌‌های نهایی با تجمع خوشه‌‌‌‌های کوچک شکل می‌‌گیرند که منجر به شناسایی 8 رخساره این میدان گازی از نمودار‌‌های چاه با دقت زیاد می‌‌شود. روش مورداستفاده در این تحقیق نیاز به مغزه‌گیری گسترده در این میدان را رفع می‌کند و منجر به صرفه‌‌جویی بسیار در هزینه و زمان می‌‌شود.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Lithofacies estimation by multi-resolution graph-based clustering of petrophysical well logs: a case study from one of the Persian Gulf’s gas fields, Iran

نویسندگان [English]

  • Mansour Aghchelou 1
  • Hamid Reza Hemmati Ahoei 2
  • Majid Nabi-Bidhendi 3
  • Ali Akbar Rahimi Bahar 4
چکیده [English]

Located in the Persian Gulf, the gas field studied in this research is one of the largest gas fields in the world. Its gas-in-place is estimated to be about 14.2 trillion cubic meters while amount of its condensate-in-place might be around 18 billion barrels. This gas field has also an oil layer containing about 6 billion barrels of oil-in-place. In this study, Kangan and Dalan formations of this field were considered. Kangan formation has three main facies: clean carbonate facies, basic clay and shale facies, and evaporate carbonate facies. Dalan formation contains four facies: shore restricted carbonates, shore organic carbonates, carbonates of the open sea, in-shore carbonate-clastic. These two formations have gas & condensate fluids.  Since this field is a heterogeneous carbonate system, lithofacies characterization is the best solution for overcoming the problem of heterogeneity in determining the petrophysical properties of the reservoir rock, reservoir modeling and identifying producing zones. However, coring as the most robust method of lithofacies identification is very expensive, time consuming and limited to a few number of wells. Therefore, this study is focused on determining the lithofacies of the study formations from available well logs.
For this purpose, multi-resolution graph-based clustering (MRGC) technique which is a dot-pattern recognition method based on non-parametric K-nearest neighbor and graph data representation was applied to sonic, density, neutron porosity and gamma ray logs to define electrofacies similar to core-derived facies determined as eight distinct facies.The cluster of the MRGC method is defined from a model with a specific character associated with the group of lithofacies. Then, Kernel representative index was used to calculate the optimal number of clusters. Small facies groups were formed based on utilizing the neighboring index to determine a K-nearest neighbor attraction for each point. At last, final clusters were constructed by combining the small clusters which lead to identifying eight facies of this gas field from well logs of high accuracy.
When electrofacies of one of the wells is built basd on its lithofacies, its cross-plots will be plotted and the certainty of electrofacies with respect to lithofacies will be checked. If the model is acceptable, it is applied to the data from two other wells and their electrofacies will be obtained. For testing facies, the cross-plots of these two wells were also drawn and painted based on facies. If there are similar petrophysical properties for each facies, the model created in the wells without cores is confirmed. MRGC is a fast method that allows the geologist or petrophysist to analyze and test different combinations of data in a short amount of time. It is also not limited by the dimensions of the data and number of the clusters. The method used in this study has obviated the need for extensive coring in this field which caused saving large amounts of money and time; and it can help to optimize the determination of new well locations and optimum pay zones.
 
 

کلیدواژه‌ها [English]

  • Lithofacies
  • Electrofacies
  • Well Logs
  • core data
  • clustering method

درویش زاده، ع.، 1382 ، زمین‌شناسی ایران، چاپ سوم، انتشارات امیرکبیر، 902.

مطیعی، ه.، 1382، زمین‌شناسی ایران- چینه‌‌شناسی زاگرس، سازمان زمین‌شناسی کشور، 556 .

Antelo, R., and Aguirre, O., 2001, Permeability calculations from clustering electrofacies technique for the petrophysical evaluation in La Pena and Tundy oil fields, SPE 69400-MS.

Dubois, M. K., Bohling, G. C., and Chakrabarti, S., 2005, Comparison of four approaches to a rock facies classification problem, Computers and Geosciences, 33, 599–617.

Frew, K., 2004, Litho ToolKit: Lithofacies estimation with the most comprehensive suite of lithofacies tools, Geology Office, Litho ToolKit, LithoQuickLook, Schlumberger Information.

Gath, I., and Geva, A. B., 1989, Fuzzy clustering for the estimation of the parameters of the components of mixtures of normal distribution: Pattern Recognition Letters, 9, 77-86.

Kelkar, M., 2005, Exploitation and optimization of reservoir performance in Hunton formation, Oklahoma: U.S. Department of Energy, Assistant Secretary for Fossil Energy, Tulsa, Oklahoma, 190 p.

Mathis, B., Leduc, J. P., and Vandenabeele, T., 2003, From the geologists’ eyes to synthetic core descriptions: Geological log modeling using well-log data, AAPG Annual Convention, May 11-14, 2003, Salt Lake City, Utah.

Serra, O., 1988, Fundamentals of Well Log Interpretation, Third Edition, Elsevier Science Publishers. 423 pp.

Shin-Ju, Ye., and Rabiller, P., 2000, A new tool for electro-facies analysis: Multi-resolution graph-based clustering: SPWLA 41st Annual Logging Symposium, 4-7.

Shin-Ju, Ye., and Rabiller, P., 2005, Automated electrofacies ordering. Petrophysics, 46(6), 409-423.

Zhan, C. T., 1971, Graph theoretical methods for detecting and describing gestalt clusters: IEEE Trans. on Computers, V. C-20, 68-86.