برآورد میزان بادبردگی از پشته‌های سنگ‌آهن با دو روش دینامک شاره‌های محاسباتی و ون‌کارمن‌‌

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشکده محیط زیست دانشگاه تهران، ایران

2 انستیتو آب و انرژی، دانشگاه صنعتی شریف، تهران، ایران

چکیده

بررسی میزان و الگوی پخش ذرات در توپوگرافی‌های گوناگون به‌منظور تعیین راهبرد‌های اندازه‌گیری و کنترل آلودگی ناشی از ذرات، دارای اهمیت بسیار زیادی است. در بسیاری از صنایع به‌واسطه وجود دپوی مواد خام در نواحی گوناگون، شاهد پدیده بادبردگی هستیم که باعث آلودگی و اتلاف منابع مواد خام می‌شود. در بررسی پدیده بادبردگی، روش‌های اندکی وجود دارد که یکی از بهترین این روش‌ها، روش عرضه شده آژانس حفاظت از محیط زیست امریکا است. در این مرجع فقط به بررسی پتانسیل بادبردگی پشته‌های گوناگون پرداخته شده ‌و در مورد نحوه پخش و توزیع غلظت بحث نشده ‌است. در این مقاله میزان بادبردگی از پشته‌های سنگ‌آهن صنایع فولادسازی با استفاده از روش‌های عددی و تجربی مورد بررسی قرار گرفته است. از نرم‌افزار فلوئنت و روش تجربی ون کارمن‌‌ در ترکیب با روش آژانس حفاظت از محیط زیست امریکا برای برآورد میزان بادبردگی در طول دوره یک ماهه از یک پشته هرمی‌‌شکل استفاده شده‌ است. نتایج حاصل از هر دو روش با اندازه‌گیری‌های صورت گرفته در محل در 10 نقطه اطراف پشته مقایسه شده‌ است. به‌منظور برآورد عددی میزان بادبردگی، هندسه پشته و خصوصیات فیزیکی سنگ‌آهن موجود در پشته شامل اندازه و توزیع دانه‌بندی ذرات در مدل دینامیکی شبیه‌سازی شده و نیم‌رخ باد در شرایط خنثی لایه مرزی جوّ بر آن اّعمال شده‌ است. در حالت تجربی از روابط آژانس حفاظت از محیط زیست امریکا برای برآورد پتانسیل بادبردگی از پشته استفاده، و سپس نحوه پخش و توزیع آن با روش  ون‌کارمن‌‌ محاسبه شده‌ است. نتایج هر دو روش در نقاط نمونه‌برداری استخراج و با نتایج اندازه‌گیری مقایسه شده‌ است. نتایج نشان می‌دهد که الگوی پخش کلی به‌دست آمده از اندازه‌گیری و روش‌های پیش‌گفته به‌‌لحاظ کیفی  مطابقت خوبی با یکدیگر دارند. روش دینامیک شاره‌های محاسباتی از نظر کمّی و کیفی تطابق بسیار خوبی با مقادیر اندازه‌گیری، به‌خصوص در پایین دست جریان داشته است. ضریب تعیّن در حالت کلی برابر 71/0 برای مدل دینامیک شاره‌های محاسباتی و 35/0 برای روش  ون‌کارمن‌‌ به‌دست آمده‌ است. روش  ون‌کارمن‌‌ در همة نقاط، غلظت آلاینده PM10 را کمتر از مقادیر اندازه‌گیری شده به‌دست می‌دهد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of wind erosion emission from iron ore piles using CFD and Von Karman methods

نویسندگان [English]

  • Khosro Ashrafi 1
  • Mostafa Kalhor 1
  • Majid Shafiepour 1
  • Ayoub Torkian 2
چکیده [English]

Open aggregate storage piles are used more and more in industrial sites. In industrial areas, emitted particulate matters from piles of row material can affect the quality of life of workers and employees and also the quality of the environment. Study of dispersion patterns and concentration of particulate matters over a landscape is important for the strategy of monitoring and controlling particulate matter. Within an industrial facility, dust emission may be generated by wind erosion of open aggregate storage piles and therefore, it pollutes the environment and wastes the row materials. Emission of particulate matters from surface of a pile depends on many parameters such as characteristics of wind (e.g. wind speed and wind direction), specifications of particles (e.g. particle diameter, density, shape, etc.) and erosion properties of surface. Therefore, for emission calculation of particulate matters from a pile and also for simulation of dispersion of emitted particles, it is necessary to simplify the physics of this phenomenon. Simplifications have been carried out based on governing equations and also applying the empirical relations obtained by field studies. Based on these theoretical and empirical investigations, a few methodologies are available for atmospheric wind erosion calculations from storage piles of row materials. The U.S. Environmental Protection Agency (EPA) method is one of the most famous approaches to this kind of calculation. It focuses on estimating the wind erosion and it cannot be used for dispersion pattern prediction. On the other hand, some models and methods have been developed to calculate the dispersion of pollutant in near and far distances from sources. One can combine the calculation of particulate matters emission with dispersion models in order to determine the particulate matters concentration at the environment.
    In the present work, two methods including the U.S. EPA wind erosion estimating approach combined with Von-Karman's scheme for dust settlement and computational fluid dynamic (CFD) method using Fluent 6.3.2 Software are applied to predict particulate matters dispersion patterns from an iron ore pile. The Von-Karman's method is based on the length and time of the particulate matter settling. In the present work, the concentration of particulate maters in different distances from the source has been calculated using these parameters. In the CFD technique, the geometry of a pile is generated in Gambit Software using a structured mesh tool. The number of the generated mesh on the pile is 104,214. In this study, the flow condition is assumed to be incompressible, turbulent and steady state. Turbulence modeling is carried out based on two types of modeling namely  and  theories. Atmospheric wind profile is assumed to be in neutral conditions and defined by a user-defined function (UDF) tool from Fluent Software. The results from the two methods are compared with concentration of particulate matters measured based on 10 points. The maximum concentration position predicted by the CFD approach is more precise than that predicted by Von-Karman's method. Good quantitative and qualitative agreements are observed between the CFD predicted deposition and the measurement results. The determination coefficient for CFD and Von-Karman methods are 0.71 and 0.35, respectively. Also, Von-Karman method underestimates the concentration of particulate matters in all 10 measurement points.

کلیدواژه‌ها [English]

  • Wind erosion
  • pile
  • Numerical methods
  • Von Karman
Badr, T., Harion, J., 2007, Effect of aggregate storage piles configuration on dust emissions: Atmos. Environ.; 41(2), 360-368.

Bagnold, R. A., 1941, The Physics of Blown Sand and Desert Dunes: Dover Publications., 265 pp.

Draxler, R. R., Gillette, D. A., Kirkpatrick, J. S., and Heller, J., 2001, Estimating PM10 air concentrations from dust storms in Iraq, Kuwait, and Saudi Arabia: Atmos. Environ, 35(25), 4315-4330.

Fluent 6.3.26, 2005, User’s Guide.

Gillette, D. A., Marticorena, B., and Bergametti, G., 1998, Changing the roughness length by saltating grains: experimental assessment, test of theory and operational parameterization: J. Geophys. Res., 103(D6), 6203–6209.

Greeley, R., James, D., and Iversen, J. d, 1973, Wind tunnel studies of Martian aeolian processes: NASA Technical Memorandum, NASA TM X-62297, May 1973.

Harper, R. J., Gilkes, R. J., Hill, M. J., and Arter, D. J., 2010, Wind erosion and soil carbon dynamics in south-western Australia: Aeolian Research, 1(3-4), 129–141.

Iversen, J. d., White, B. R., 1976, Saltation threshold on Mars: the effect on inter particle force, surface roughness, and low atmospheric density: Icarus, 29(3), 381-393.

Kardous, M., Bergametti, G., and Marticorena, B., 2005, Aerodynamic roughness length related to tillage ridges: Annali di Geofisica, 23(10), 3187-3193.

Leow, W., and Liang, L., 2005, Atmospheric boundary layer wind tunnel design: TEC Group in the University of Adelaide, Australia.

Lu, H., Y, and Shao., Y., 2001, Toward quantitative prediction of dust storms: an integrated wind erosion modeling system and its applications: Environ. Modell. Softw., 16(3), 233-249.

Marticorena, B., and Bergametti, G., 1995, Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme: J. Geophys. Res., 100(D8), 16415-16430.

Marticorena, B., Bergametti, G., Gillette, D., and Belnap, J., 1997, Factors controlling threshold friction velocity in semiarid and arid areas of the United States: J. Geophys. Res., 102(D19), 23277-23287.

Parker, S. T., and Kinnersley, R. P., 2004, A computational and wind tunnel study of particle dry deposition in complex topography: Atmos. Environ., 38(23), 3867-3878.

Turpin, C., and Harion, J., 2009, Numerical modeling of flow structures over various flat-topped stockpiles height: Implications on dust emissions: Atmos. Environ., 43(35), 5579-5587.

U. S. EPA, 1998, Variable information for estimating air emissions for stone mining and quarrying operations: Technical Assessment Paper.

U. S. EPA, 2006a, Compilation of air pollutant emission factors: AP-42., Volume I: Stationary Point and Area Sources, Chapter 13, Miscellaneous Sources, Office of Air Quality Planning & Standards.

U. S. EPA, 2006b, User’s Guide for the AMS/EPA Regulatory Model–AERMOD: Office of Air Quality Planning and Standards, Research Triangle Park, NC.

Vanoni, V. A., 2006, Sedimentation engineering: ASCE Manuals and Reports No. 54, Task Committee for the Preparation of the Manual on Sedimentation, American Society of Civil Engineers. Environmental and Water Resources Institute (U.S.).

Zhang, Z., Wieland, R., Reiche, M., Funk, R., Hoffmann, C., Li, Y., and Sommer, M., 2011, Wind modelling for wind erosion research by open source computational fluid dynamics: Ecol. Inform., 6(5), 316–324.