تفسیر داده‌‌های گرانی‌سنجی با استفاده از طیف توان تعمیم‌یافته

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

دانشگاه صنعتی شاهرود، ایران

چکیده

برآورد عمق توده بی‌هنجار، نقش مهمی در تفسیر داده‌های میدان پتانسیل ایفا می‌کند. تاکنون روش‌های متعددی برای این منظور در حوزه مکان و عدد موج عرضه شده است. در این مقاله برای برآورد عمق توده بی‌هنجار از روش خودکار طیف توان استفاده شده و نتایج آن با نتایج حاصل از روش اویلر مقایسه شده است. روش اویلر بر مبنای محاسبه گرادیان‌های میدان پتانسیل است و تنها محدودیت زمین‌شناسی در نظر گرفته شده برای آن ضریب هندسی است. روش اسپکتور و گرانت نیز با استفاده از  آهنگ کاهش طیف توان، عمق میانگین منبع بی‌هنجاری را محاسبه می‌کند. عمق به‌دست آمده از این روش دارای خطای زیادی است، به‌‌همین‌‌خاطر فدی و همکاران با معرفی آهنگ کاهش توانی که مستقل از عمق است، طیف توان را تصحیح کردند. برای مقایسه این دو روش از یک مدل مصنوعی متداول استفاده شد و نتایج به‌دست آمده مورد مقایسه قرار گرفت. هرچند هر دو روش نتایج مطلوبی در بر داشته‌‌اند اما روش اویلر بسیار تحت‌‌تأثیر ضریب هندسی انتخاب شده برای ساختار زمین‌شناسی مورد‌‌نظر است. این دو روش اولین‌بار برای برآورد عمق پی‌سنگ های نفتی روی نیم‌رخی از داده‌های گرانی شمال غربی ایران (حوضه رسوبی مغان) استفاده شده است که نتایج به‌دست آمده، همخوانی زیادی با نتایج حاصل از لرزه‌نگاری دارد.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Interpretation of gravity data using generalized power spectrum

نویسندگان [English]

  • Arash Hadadian
  • Ali Nejati Kalateh
  • Faramarz Doulati Ardejani
چکیده [English]

Depth estimation of potential field anomalies has an important role in interpretation of potential field data. There are many methods for this purpose in space and wave-number domains. These methods are generally introduced for interpretation of magnetic data and then generalized to gravity data. In this study, the power spectrum automatic method was used to depth estimation of gravity dada and then it was compared with the results from the Euler method.
    The Euler method belongs to automatic depth estimation methods in a space domain and has been used by a number of authors for analyzing both magnetic and gravity anomalies. Euler’s homogeneity equation relates the potential field and its gradient components, either measured or calculated, to the location of the source with the degree of homogeneity expressed as a structural index (N). Thompson developed this technique and applied it to profile data. Reid et al. developed a more widely used version of this technique for grid-based data. Also, there have been more recent improvements on the technique including the estimation of the structural index.
    The interpretation of the gravity and magnetic data is preferred in a wavenumber domain because of a simple relation between various source models and the field. Depth estimation of the anomalous sources is usually carried out by Spector and Grant method and its variants in a wavenumber domain. These methods assume different assemblage of sources like statistical ensemble of prisms, white noise of vertical needles with constant magnetization, a sandwich model of uniaxially magnetic sheets, equivalent density layer, etc. Because of their simplicity, these methods have been in continuous use since their development. The Spector and Grant method relates the average depth of the source to decay rate of the power spectra. However, depth estimation by this method shows a large deviation from the real depth. Fedi et al. have shown the inherent power-law relation of power spectra in a potential field and from aeromagnetic spectra close to -3, they  found the unique scaling exponent to be -2.9. Therefore, they introduced a power-law rate of the decay independent of the depth and corrected the power spectra using this factor.
    Here, we used a typical synthetic model for comparison of these methods. In this case, the depth value calculated from a non-corrected power spectrum was overestimated. However, the depth value found by a generalized power spectrum, introduced by Fedi et al.,  was close to the true assumed depth. Therefore, the results had a remarkable accuracy for both methods; but the Euler method was largely affected by the structural index of the related geological structure. These methods were applied to a profile of gravity data of the Northwest of Iran (Moghan sedimentary basin) for the first time to drive the mean depth of the basement. The application of the Euler method to the gravity data of Moghan sedimentary basin showed one layer with an acceptable depth value; the non-corrected power spectrum method showed two layers with overestimated depth values and the generalized power spectrum showed one layer close to the real depth value. Therefore, the generalized power spectrum method, like the synthetic model, has shown much better results in a good agreement with seismic works.
 

کلیدواژه‌ها [English]

  • Euler method
  • power spectrum
  • structural index
  • depth factor
  • width factor
  • Moghan sedimentary basin

نجاتی کلاته، ع.، میرزایی، م.، گویا، ن. و شاهین، ا.، 1389، مدل­سازی وارون داده­های مغناطیسی با استفاده از روش زیر فضا: فصلنامه علوم زمین، 75، 172-165.

Bansal, A. R., and Dimri, V. P., 2010, Scaling spectral analysis: A new tool for interpretation of gravity and magnetic data: e-Journal Earth Science India, 3(I), 54-68.

Barbosa, V., Silva, J., and Medeiros, W., 1999, Stability analysis and improvement of structural index estimation in Euler deconvolution: Geophysics, 64(1), 48-60.

Barongo, J. O., 1984, Euler’s differential equation and the identification of the magnetic point-pole and point-dipole sources: Geophysics, 49(9), 1549-1553.

Bhattacharyya, B., 1966, Continuous spectrum of the total magnetic field anomaly due to a rectangular prismatic body: Geophysics, 31(1), 97-121.

Dawi, M. G. E., Tianyou, L.,  Hui, S.,  and Dapeng, L.,  2004, Depth estimation of 2-D magnetic anomalous sources by using Euler deconvolution method: American Journal of Applied Sciences, 1(3), 209-214.

Fedi, M., Quarta, T., and De Santis, A., 1997, Inherent power-law behavior of magnetic field power spectra from a spector and grant ensemble: Geophysics, 62(4), 1143-1150.

Gregotski, M., Jensen, O., and Arkani- Hamed, J., 1991, Fractal stochastic modeling of aeromagnetic data: Geophysics, 56(11), 1706-1715.

Hahn, A., Kind, E. G., and Mishra, D. C., 1976, Depth estimation of magnetic sources by means of Fourier amplitude spectra: Geophysical Prospecting, 24, 278-308.

Hansen, R., and Suciu, L., 2002, Multiple source Euler deconvolution: Geophysics, 67(2), 525-535.

Hood, P., 1965, Gradient measurements geophysics in aeromagnetic surveying: Geophysics, 30(5), 891-902.

Marson, I., and Klingele, E., 1993, Advantages of using the vertical gradient of gravity for 3-D interpretation: Geophysics, 58(11), 1588-1595.

Maus, S., and Dimri, V. P., 1995, Potential field power spectrum inversion for scaling geology: Journal of Geophysical Research, 100(B7), 12605-12616.

Naidu, P., 1968, Spectrum of the potential field due to randomly distributed sources: Geophysics, 33(2), 337-345.

Naidu, P. S., 1972, Maximum likelihood (ML) estimation of depth from the spectrum of aeromagnetic fields: Pure and Applied Geophysics, 95(1), 141-149.

Naidu, P. S., and Mathew, M. P., 1998, Analysis of Geophysical Potential Fields: a Digital Signal Processing Approach: Elsevier science publishers, Amseterdam, 298p.

Pilkington, M., and Todoeschuck, J. P., 1990, Stochastic inversion for scaling geology: Geophysical Journal International, 102(1), 205-217.

Pilkington, M., and Todoeschuck, J. P., 1993, Fractal magnetization of continental crust: Geophysical Research Letters, 20(7), 627-630.

Pilkington, M., Gregotski M. E., and Todoeschuck, J. P., 1994, Using fractal crustal magnetization models in magnetic interpretation: Geophysical Prospecting, 42(6), 677-692.

Reid, A., Allsop, J., Granser, H., Millett, A., and Somerton, I., 1990, Magnetic interpretation in three dimensions using Euler deconvolution: Geophysics, 55(1), 80-91.

Smellie, D., 1956, Elementary approximations in aeromagnetic interpretation: Geophysics, 21(4), 1021-1040.

Spector, A., and Grant, F., 1970, Statistical models for interpreting aeromagnetic data: Geophysics, 35(2), 293-302.

Thompson, D., 1982, EULDPH: A new technique for making computer-assisted depth estimates from magnetic data: Geophysics, 47(1), 31–37.