پس‌پردازش برون‌داد مدل دینامیکی MRI-CGCM3 برای پیش‌بینی فصلی بارش استان خراسان رضوی

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

پژوهشکده اقلیم شناسی، سازمان هواشناسی کشور، مشهد، ایران

چکیده

مدیریت منابع آبی در کشور به سبب وابستگی بخش عمده‌‌ای از فعالیت‌‌های اقتصادی به مقدار و توزیع زمانی بارش دارای اهمیت بسیار زیادی است و پیش‌بینی فصلی یکی از ابزارهای مهم در مدیریت بهینه منابع آبی محسوب می‌شود. در این تحقیق به‌منظور عرضة پیش‌بینی فصلی بارش استان خراسان رضوی، برون‌داد متغیر‌‌های متفاوت مدل دینامیکی MRI-CGCM3، در دوره 1981-2007 روی هفت ایستگاه هواشناسی استان خراسان رضوی پس‌پردازش شدند. داده‌‌های مدل از سازمان هواشناسی ژاپن اخذ شدند. نتایج نشان داد که استفاده از این روش باعث افزایش دقت پیش‌بینی‌‌‌های فصلی می‌‌‌شود؛ به‌‌گونه‌‌ای که در ایستگاه مشهد با اِعمال فرایند پس‌پردازش آماری با استفاده از روش همبستگی چندمتغیره خطی، اُریبی و خطای نسبی پیش‌بینی فصلی بارش به‌ترتیب از 43/107 به 99/2 میلی‌متر و از 15/66 به 78/0 کاهش یافت. همچنین میانگین اُریبی بارش در کل استان از 3/94 به 5/3 میلی‌متر کاهش یافت. در این پژوهش پیش‌بینی فصلی در پنج طبقه بیش از نرمال، نرمال تا بیش از نرمال، نرمال، نرمال تا کمتر از نرمال و کمتر از نرمال تهیه و با داده‌‌‌های متناظر بارش دیدبانی مقایسه شد. نتایج نشان داد که توانمندی پیش‌بینی فصلی خام مدل 3/25 درصد است  و با اِعمال پس‌پردازش آماری تا 2/62 درصد افزایش می‌‌‌یابد که حاکی از بهبود 9/36 درصدی در توانمندی پیش‌بینی‌‌ها است. همچنین مشخص شد که اگر تعداد طبقات پیش‌بینی بارش از پنج طبقه به سه طبقه بیش از نرمال، نرمال و کمتر از نرمال کاهش یابد، توانمندی پیش‌بینی به 6/73 درصد افزایش خواهد یافت. به علت اُریبی بسیار زیاد داده‌‌‌های خام مدل، اجرای فرایند پس‌پردازش آماری موجب شد تا خطای پیش‌بینی در همة ایستگاه‌ها بیش از صددرصد بهبود یابد. علاوه بر این مقایسه نتایج بارش پیش‌بینی شده با استفاده از روش جاری نشان می‌‌‌دهد که مدل توانسته است بارش ‌‌های فصل پاییز 1391 را به‌‌خوبی پیش‌بینی کند. همچنین نتایج روشن ساخت که برخی شاخص‌‌هایی که برای راستی‌آزمایی پیش‌بینی عددی کوتاه‌مدت مورد استفاده قرار می‌گیرند، پاسخ صحیحی برای پیش‌بینی‌‌های فصلی به‌دست نمی‌‌دهند. 
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Statistical post processing MRI-CGCM3 output for seasonal precipitation forecast over Khorasan-Razavi province, Iran

نویسندگان [English]

  • Iman Babaeian
  • Maryam karimian
  • Rahele Modirian
چکیده [English]

In recent years, due to frequent climatic extreme events, demands for reliable seasonal precipitation forecasts have been increased. The seasonal to interannual climate forecasts have become essential for policy makers and risk managers in planning several activities, including those related to agriculture, water resource management and many others which directly or indirectly affect the society, especially in water resources and agricultural, environmental and health sectors. Although numerical models are being increasingly used to generate operational seasonal forecasts, the reliability of these products remains relatively low. In this regard, for improving the accuracy of seasonal precipitation forecasts, the outputs of the MRI-CGCM3 seasonal forecast model have been used for the statistical post-processing of the model precipitation over the synoptic weather stations of Khorasan-Razavi Province in Iran over the period of 1981-2007. We had the model output data from the Tokyo Climate Centre. The outputs of MRI-CGCM3 are available to registered National Meteorological and Hydrological Services (NMHSs) on the website of the TokyoClimateCenter of the Japan Meteorological Agency (JMA/TCC).
Regression-based post processing methods have proven useful in increasing forecast skills. The current study tests this hypothesis applying both linear regressions to the correction of climate hind casts produced by MRI-CGCM3 general circulation models. Statistically significant predictions are produced from the model output with no forecast skill prior to post-processing. MRI-CGCM3 has produced 30 years of reforecast covering a period of 1981-2008. The reforecast data was used to produce post-processing multivariate relations between reforecast parameters and the observed precipitation in the training period of 1981-2001. Model variables and indices which were used in the post-processing were WIO rain, Z2030, Z5060, WIO SST, T850, T2m, SST, NINOWEST SST, WNP RAIN, NINO3 SST, Z3040, H500, SLP, SAMOI RAIN, MC RAIN, DL RAIN, THMD, THTR and total precipitation. The skill of multivariate post-processing was evaluated using Mean Square Skill Score, Mean Bias Error, relative error and categorical skill score over the training and evaluation periods. Categorical skill score is determined by computing the skill of the post processed and the raw model data in forecasting five precipitation categories i.e. above normal, above normal to normal, normal, normal to below normal and below normal.  The area of study covered Khorasan-Razavi province stations including Mashad, Golmakan, Ghuchan, Sarakhs, Torbate-Heydarieh, Kashmar and Sabzvar.
Post processed precipitations were compared to the observed precipitations to investigate the capability of the statistical post processing method. After post processing, the bias and relative error decreased from 107.43 to 2.99 and 66.15 to 0.78 at Mashad station, respectively. Station average bias error decreased from 94.3 to 3.5mm and categorical skill was improved from 25.3% in raw data to 62.2% in the post processed data. The bias and relative error were significantly decreased in the other stations. The skill of the post-processing of precipitation was compared to the observed precipitation for all months. The result showed that the multiple regression method can be significantly used to increase the accuracy of the model predictions over Khorasan-Razavi province.
 
 

کلیدواژه‌ها [English]

  • Precipitation
  • post processing
  • seasonal forecasting
  • Statistical Downscaling
  • MRI-CGCM3

آزادی م.، شیرغلامی م. ر. و حجام س.، 1389، پس‌پردازش برون داد مدل WRF برای بارندگی در ایران: مقاله نامه چهاردهمین کنفرانس ژئوفیزیک ایران، 23-21 اردیبهشت 1389، تهران،‌ موسسه ژئوفیزیک، 94-91.

آزادی م.، جعفری س.، میرزائی ا. و عربلی پ،1387، پس‌پردازش برون‌داد مدل میان مقیاس MM5 برای دمای بیشینه و کمینه با استفاده از پالایه کالمن: مجله فیزیک زمین و فضا، 34(1)، 61-45.

بابائیان، ا.، کریمیان، م،. مدیریان، ر.، محمدیان، آ.، خزانه داری، ل.، کوهی، م.، قندهاری، ش.، عباسی، ف. و صمدی، س.، 1391، گزارش نهایی طرح جامع هشدار و پیش­آگاهی خشکسالی کشور، مجری پژوهشکده اقلیم شناسی، کارفرما: سازمان هواشناسی کشور، 358.

راستگو، ا. آزادی، م. و حجام، س.، ‌1389، پس‌پردازش برون‌داد مدل WRF با استفاده از روش پالایه کالمن غیرخطی‌برای تندی باد در تراز ده متری و دمای هوا در تراز دو متری: مجله پژوهش‌‌‌های اقلیمی،‌ 1(2و3)، ‌106-93.

کریمیان، م.، ‌بابائیان، ا. و مدیریان، ر.، ‌1391، پیش‌بینی فصلی بارش استان خراسان رضوی با استفاده از پس‌پردازش آماری مدل دینامیکی MRI-CGCM3:  مقاله­نامه کنفرانس مدیریت منابع آب، دانشگاه کشاورزی و منابع طبیعی ساری، تیرماه 1391.

یاراحمدی، د. و عزیزی، ق.، 1386، تحلیل چند‌متغیره ارتباط میزان بارش فصلی ایران و شاخص‌‌‌های اقلیمی: مجله پژوهش‌های جغرافیایی،‌62 ، 174-161.

Chen, D., and Li, X., 2004, Scale dependent relationship between maximum ice extent in the Baltic Sea and atmospheric circulation: Global and Planetary Change, 41, 275–283

Cui, B., Toth, Z., Zhu, Y., and Hou, D., 2011, Bias Correction for Global Ensemble Forecast: Journal of Weather and Forecasting, 27, 396-410.

Edwards, P. N., 2000b, A Brief History of Atmospheric General Circulation Modeling, in Heard, D. A., Randall, eds, In the General Circulation Model Development: Academic Press, 67-90.

Feddersen, H., and Andersen, E., 2004, A method for statistical downscaling of seasonal ensemble predictions: Tellus, March 2004, 1-10.

Finnis, J., Hsieh, W. W., Lin, H., and Merryfield, W., 2011, Nonlinear post-processing of numerical seasonal climate forecasts: Journal of Atmosphere-Ocean, 26, 1-34.

Giorgi, F., Hewitson, B., Christensen, J., Hulme, M., Von Storch, H., Whetton, P., Jones, R., Mearns, L., and Fu, C., 2001, Regional climate simulation, evaluation and projections, in Heard, J. T., Houghton, Eds., Climate Change 2001: The Scientific Basis, Cambridge University Press, 944.

Goswami, P., and Mallick, S., 2010, Objective bias correction for improved skill in forecasting diurnal cycles of temperature over multiple locations: The summer case: Journal of Weather and Forecasting, 26, 26-43.

Hanssen-Bauer, I., Achberger, C., Benestad, R., Chen, D., and Førland, E., 2005, Empirical-statistical downscaling of climate scenarios over Scandinavia: a review: Climate Research,  29, 255–268.

Jia, X. J., Derome, J., and Lin, H., 2008, Improving seasonal forecast skill for the surface air temperature and the precipitation, Technical report, Department of Atmospheric and Oceanic Sciences, McGillUniversity, Montr´eal, Qu´ebec, Canada, 62.

Karori, M. A., and Zhang, P., 2008, Downscaling NCC-CGCM output for seasonal prediction prediction over Islam abad –Pakistan: Pakistan Journal of Meteorology, 4, 59-72.

Lee, J. Y., 2003, Data and Model Description,  Assessment of Potential Seasonal Predictability with a Multi-Model Dynamical-Statistical Ensemble System: Ph.D. thesis, Faculty of the GraduateSchool of the SeoulNationalUniversity.

Monashe, L. D., Nipen, T., Liu, Y., Roux, G., and Stull, R., 2011, Kalman Filter and Analog Schemes to Post-process Numerical Weather Predictions: Monthly Weather Review, 139, 3554-3570.

Muler, M. D., 2011, Effects of Model Resolution and Statistical Post-processing on Shelter Temperature and Wind Forecasts: Journal of Applied Meteorology, 50, 1627-1636.

Murphy, J., 1999, An evaluation of statistical and dynamical techniques for downscaling local climate: Journal of Climate, 12, 2256–2284.

Pezzi, L. P., and Kayano, M. T., 2008, An analysis of the seasonal precipitation forecasts in South America using wavelets: International Journal of Climatology, DOI:10.1002/joc

Roulin, E., and Vannitsem S., 2011, Post-processing of ensemble precipitation predictions with extended logistic regression based on hindcasts: Monthly Weather Review, 140, 874-888.

Shimizukawa, J., Chen C. Y., and Iba, K., 2009, Multi-regression model for peak load forecast in demand side like university Campus: Presented at the International Conference on Electrical Engineering 2009.

Zheng, X., and Renwick J. A., 2003, A regression-based scheme for seasonal forecasting of New Zealand temperature: Journal of Climate, 16, 1843-1853.

Zorita, E., and Storch, V., 1998, The Analog method as a simple statistical downscaling technique: comparison with more complicated methods: Journal of Climate, 12, 2474-2489.