مدل‌سازی وارون و تفسیر دو‌بُعدی داده‌‌های نیم‌رخ‌‌زنی آرایه الکترومغناطیسی (EMAP)

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشگاه صنعتی شاهرود، ایران

2 دانشگاه صنعتی اصفهان، ایران

3 سازمان انرژی‌‌های نو، وزارت نیرو، ایران

چکیده

روش نیم‌رخ‌‌زنی آرایه الکترومغناطیسی (Electromagnetic Array Profiling) یاEMAP  یک حالت خاص از اندازه‌گیری‌‌های میدان مگنتوتلوریک (Magnetotelluric: MT) محسوب می‌‌‌شود. در این تحقیق داده‌‌های نیم‌رخ‌‌زنی آرایه الکترومغناطیسی منطقه اکلاهومای آمریکا شامل 93 دوقطبی الکتریکی مورد بررسی قرار گرفته است. ابتدا پردازش داده‌‌ها و حذف داده‌‌های نامناسب از نظر میزان نوفه و جداسازی محدوده مناسب بسامد برای مدل‌سازی داده‌‌ها صورت گرفته است. سپس با اجرای طرح‌واره‌‌های وارون‌سازی دو‌بُعدی گرادیان مزدوج غیرخطی (NLCG) و اکام (Occam) روی این داده‌‌ها مدل‌‌های وارون برای تفسیر ساختار‌‌های زمین‌شناسی منطقه عرضه شده است. همچنین داده‌‌های چهار سونداژ مگنتوتلوریک (زمین‌مغناط‌برقی) با پنج مؤلفه مرسوم روی یک نیم‌رخ‌‌ عمود بر امتداد برداشت داده‌‌های نیم‌رخ‌‌زنی آرایه الکترومغناطیسی نیز مورد بررسی قرار گرفته است و نتایج وارون‌سازی این داده‌‌ها نیز در تفسیر ساختار‌‌های زمین‌شناسی منطقه استفاده شده است. نتایج نشان می‌‌‌دهد که پردازش داده‌‌های اولیه و کنترل پارامتر‌‌های وارون‌سازی از جمله طراحی شبکه مناسب برای مدل‌سازی، مدل شروع، ضریب لاگرانژ و مقدار نبود برازش هدف برای تولید یک مدل مناسب بسیار مؤثر هستند و لذا با کنترل این پارامتر‌‌ها توانایی طرح‌واره‌‌های گرادیان مزدوج غیرخطی و اکام در مقایسه با سایر روش‌‌های مدل‌سازی وارون مشخص شده است. همچنین توانایی داده‌‌های نیم‌رخ‌‌زنی آرایه الکترومغناطیسی در به‌دست آوردن توزیع مقاومت ویژه رسوبات زیرسطحی مشخص شده است.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

2D Inversion and interpretation of electromagnetic array profiling (EMAP) data

نویسندگان [English]

  • Reza Ghaedrahmati 1
  • Ali Moradzadeh 1
  • Nader Fathianpour 2
  • Soheil Porkhial 3
چکیده [English]

The magnetotelluric (MT) method is one of the several electrical techniques used in geophysical explorations. This natural-source electromagnetic technique is used to obtain electrical resistivity information from the subsurface structure. The data used in this method consists of a simultaneous measurement of naturally-occurring, time-dependent magnetic field fluctuations and of the electric fields induced in the earth by the magnetic fields.  At a single site on the earth’s surface, a number of recording time segments of the horizontal (Hx, Hy) and vertical (Hz) magnetic and horizontal (Ex, Ey) electric fields are recorded to obtain the spatial resistivity variation within the earth. One of the major problems in the interpretation of MT data is the effects caused by topographical features or near-surface inhomogeneities. Such small local features may have a galvanic response (due to boundary charges) that is essentially independent of the frequency within the range of an MT sounding.  These small 2D or 3D inhomogeneities cause the measured electric fields to be perturbed from their regional values and a shift of the apparent resistivity curves take place vertically in a log-log scale of the apparent resistivity sounding curves. This is called the MT static shift and needs to be minimized somehow to allow an accurate interpretation of data.  Due to the importance of this phenomenon, a number of studies have been devoted to understanding and correcting this problem. The electromagnetic array profiling (EMAP) is a special form of MT data acquisition to resolve the spatial aliasing effects as well as the static shifts generated in MT measurements.
In the EMAP method, surface electric fields are sampled tangentially to a continuous survey traverse. Tensor impedance components along the EMAP traverse are either computed from the primary surface magnetic fields sampled at a fixed reference station or estimated from an array of magnetic stations (Figure 1). The Earth's resistivity distribution beneath the EMAP traverse is determined from these in-line tensor impedance components.  
For both qualitative and quantitative interpretations, the importance of MT data inversion has increased in the past few decades. Among the developed two-dimensional (2D) inversion algorithms, the Occam’s inversion and the non-linear conjugate gradient (NLCG) methods are useful algorithms for MT data modeling. The original Occam method was provided for a 1D inversion of MT data and it was then developed for the 2D case by deGroot-Hedlin and Constable in 1990. This algorithm seeks the minimum possible structure model subject to an appropriate fit to the data. The NLCG algorithm employs the non-linear conjugate gradient method directly to minimize the objective functional of the MT inverse problem. In this algorithm, the computation of the full sensitivity matrix and the complete solution for the normal equation system in the model space are avoided.
The main objective of this study was to investigate the ability of Occam and NLCG inversion algorithms in an interpretation as well as 2D inverse modeling of Oklahoma EMAP data. It was also attempted to compare the results of these new inversions with those already acquired by the other different inversions. To achieve these goals, EMAP data were processed considering the noise amount and the bad data were removed and suitable data sets were defined for the inversion. For the inverse modeling, first an appropriate mesh grid for both resistivity blocks and forward computations was defined for each inversion algorithm. Then, the inversion parameters such as regularization parameter, the starting model and the target misfit were set to achieve acceptable results. Finally, the 2D NLCG and Occam inversion algorithms were applied to EMAP data to obtain geoelectrical models for the subsurface geological structures in the studied area. In addition, a set of MT data from four stations with five components of electric and magnetic field data along a line perpendicular to the EMAP profile were investigated to integrate with the results of the EMAP data inversions.
The results of this study indicate that data processing and controlling of the inversion parameters such as: an appropriate grid, regularization parameters, the starting model and the target misfit are very important for obtaining a suitable model. Therefore, by properly setting these parameters, the capabilities of the NLCG and the Occam algorithms for inverting a large volume of data have been tested and compared to those of other inversion algorithms. Furthermore, the capabilities of EMAP and MT data to map the subsurface resistivity distribution of the geological structures have been shown. 
 
 

کلیدواژه‌ها [English]

  • 2D Inversion
  • MT data
  • static shifts
  • EMAP
  • Resistivity

مرادزاده، ع؛ طهماسبی، ف و فاتح، م.، 1386، بررسی امکان به‌‌کارگیری شبکه‌‌های عصبی مصنوعی در مدل‌سازی وارون دوبُعدی ترکیبی داده‌‌های دو مد قطبش روش مگنتوتلوریک، فصل‌نامه علوم زمین، 64، 88-101.

Bostick, F. X. Jr., 1977, A simple almost exact method of MT analysis: Workshop of Electrical Methods in Geothermal Exploration, U. S. G. S, contract no. 14080001-8-359.

Bostick, F. X. Jr., 1986, Electromagnetic array profiling: 56th SEG Meeting, Houston, Expanded Abstracts.

Cagniard, L., 1953, Basic theory of the magnetotelluric method of geophysical prospecting: Geophysics, 18, 605–635.

deGroot-Hedlin, C., and Constable, S., 1990, Occam’s inversion to generate smooth, two-dimensional models from  magnetotelluric data: Geophysics, 55, 1613–1624.

Dobrin, M. B., and Savite, C. H., 1988, Introduction to Geophysical Prospecting: McGraw-Hill Book Co., fourth edition, Printed in Singapore.

Hart, D. L., 1974, Reconnaissance of the water resources of the Ardmore and Sherman Quadrangles, Southern Oklahoma: Oklahoma Geol. Survey, Map HA-3, Scale 1:250000.

He, W., Hu, W., and Dong, W., 2010, Petroleum electromagnetic prospecting advances and case studies in China: Surv. Geophys, 31, 207–224.

Jones, A. G., and Schultz, A., 1997, Introduction to MT-DIW2 Special Issue: J. Geomag. Geoelectr., 49,727-737.

Moradzadeh, A., 1998, Electrical Imaging of the Adelaide Geosynclines Using Magnetotellurics (MT): Ph.D thesis, Flinders University of south Australia.

Moradzadeh, A., 2003, Static shift appraisal and its correction in magnetotelluric (MT) survey: 21st Symposium on Geosciences, Tehran, Iran.

Ogawa,Y., 1997, Two Data Adaptive Inversion of the Oklahoma EMAP Dataset: J. Geomag. Geoelectr., 49, 801-806.

Rodi, W. L., and Mackie, R. L., 2001, Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion: Geophysics, 66, 174–187.

Schmoldt, J., Jones, A. G., and Rosell, O., 2008, PICASSO- Phase I: MT investigation of the Betic-Rif mountain system, Comparison of actual robust processing algorithms: 19th IAGA WG 1.2 Workshop on Electromagnetic Induction in the Earth, Beijing, China, 23-29.

Shomaker, C. L., Shoham, Y., and Hocky, L., 1986, Interpretation of Natural Source Electromagnetic Array Data: 56th SEG Meeting, Houston, Expanded Abstracts.

Siripunvaraporn, W., and Egbert, G., 2000, An efficient data-sub space inversion method for 2-D magnetotelluric data: Geophysics, 65, 791– 803.

Sternberg, B. K., Washburne, J. C., and Pellerin, L., 1988, Correction for the static shift in magnetotellurics using transient electromagnetic soundings: Geophysics, 53, 1459-1468.

Swift, C. M. Jr., 1967, A Magnetotelluric Investigation of an Electrical Conductivity Anomaly in the Southwestern United States: Ph.D thesis, Massachusetts Institute of Technology.

Torres-Verdin, C., and Bostick, F. X. Jr., 1990, Properties of EMAP in tow-dimensional environments: 60th SEG Meeting, San Francisco, Expanded Abstracts.

Torres-Verdin, C., and Bostick, F. X. Jr., 1992, Principles of spatial surface electric field filtering in magnetotellurics: Electromagnetic array profiling (EMAP): Geophysics, 57(4), 603-627.

Uchida, T., 1997, Two-Dimensional inversion of Oklahoma data with smoothness regularization: J. Geomag. Geoelectr., 49, 791-800.

 Vozoff, K., 1991, The magnetotelluric method, in Nabighian, M. N. (Ed.), Electromagnetic Methods in Applied Geophysics: SEG, Tulsa, OK, 2, 641– 707.

Word, D. R., Goss, R., and Chamber, D. M., 1986, An EMAP case study: 56th SEG Meeting, Houston, Expanded Abstracts.