مدل‌‌سازی تغییر مختصات مسطحاتی نقاط سطحی زمین در چارچوب‌‌های مرجع ITRF در محدودة فلات ایران

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

دانشکده مهندسی نقشه‌برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

آشنایی با نحوه حرکت و تغییر مختصات نقاط سطح زمین با زمان برای انواع کاربردهای ژئودتیک امری بسیار مهم و ضروری است. هدف از این تحقیق مدل‌سازی وابسته به زمان جابه‌جایی و تغییر مختصات نقاط سطحی زمین در اثر حرکت صفحه‌های زمین‌ساختی و زمین‌لرزه‌ها در محدوده فلات ایران است. از مدل عرضه شده می‌توان برای پیش‌بینی تغییر مختصات نقاط سطحی زمین و یا پیش‌بینی مشاهدات ژئودتیک (طول و زاویه) از یک اپوک زمانی دلخواه به اپوک دلخواه دیگر نیز بهره جست. این مدل مختصات نقاط ورودی را در انواع چارچوب‌های مرجع ITRF و یا WGS84 دریافت می‌کند و بعد از اجرای محاسبات، خروجی را در چارچوب مرجع دلخواه عرضه می‌دارد. به‌منظور مدل‌سازی حرکت دائمی صفحه‌ها و حرکت‌های بین‌لرزه‌ای و همچنین حرکت‌های هم‌لرزه از روابط تحلیلی اکادا (1985) استفاده شده است. جذر میانگین مربعات (rms) خطای مدل‌سازی حرکت‌های دائم و بین‌لرزه‌ای برای مدلی که بهترین انطباق را با مشاهدات GPS داشت برابر mm/yr 35/0 محاسبه شد. نتایج مدل‌سازی نشان می‌دهد که سهم گسلش‌های اطراف صفحه عربستان در تولید میدان سرعت GPS شبکه غیردائم ژئودینامیک سراسری ایران بیشتر از سهم گسلش‌های فلات آناتولی و حتی گسلش‌های داخلی ایران است. استفاده از پارامترهای هندسی دقیق گسلش ناشی از زمین‌لرزه‌ها که با بهره‌گیری از مشاهدات InSAR و با حل مسئله معکوس به‌دست آمده باشند و مدل‌سازی حرکت‌های بعدلرزه‌ای با استفاده از مدل وانگ (2006) برای تکمیل و بالا بردن دقت خروجی‌های مدل پیشنهاد می‌شود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Horizontal coordinates change modeling of Earth surface points in ITRF reference frames in the region of Iranian plateau

نویسندگان [English]

  • Asghar Rastbood
  • Behzad Voosoghi
چکیده [English]

Being familiar with the modes of motion and coordinate changes of the Earth surface points as a function of time is very important and essential in different types of geodetic applications. The puepose of this research is the time-dependent modeling of displacement and coordinate changes of the Earth’s crust surface points due to the plate tectonic motions and earthquakes in the region of Iranian plateau. The provided model could be used to predict the coordinate changes of surface crust points or to predict the geodetic observations (distance and angle) from one arbitrary epoch to another. This model receives the coordinates in various ITRFs or WGS84 reference frames and after the computations are made, the results could be provided in any reference frame.
The Bursa-Wolf seven-parameter conformal model was used to transform three dimensional Cartesian co-ordinates between WGS84 and ITRF2000. In the absence of a crustal motion, the equations for transforming positional coordinates from one ITRF to another are rather familiar to the surveying community, i.e. it is a seven-parameter transformation. In the presence of a crustal motion, the transformation equations can be generalized to allow one frame to move relative to the other. Thus, each of the seven defining parameters becomes a function of time. Therefore, in modeling, fourteen transformation parameters were used for ITRF2000 reference frame transformation to the previous and later reference frames.
Okada (1985) analytical model was used to model sudden coseismic and interseismic motions due to earthquakes. In previous works (Pearson, 2010 and Meade, 2005) the block model was used for secular and interseismic deformation modeling, but in this research, we used Okada (1985) analytical modeling for this purpose since (1) Modeling the present-day velocity field determined with GPS networks incorporates geological constraints on the geometry of the main structures and on the long-term deformations; (2) Regions between the major faults are not rigid and so the modeling allows for internal deformations. Finally, we have a tectonic model for Arabia-Eurasia oblique collision zone in Iran that is more realistic than the rigid block model. This model shows that about 30% of GPS velocity field components are produced by faults inside Iran, 60% by Arabian plate and 10% by Anatolian plate.
Continuous use of GPS data and local network observations is recommended to get a more precise model for secular and interseimic motions. Also using more precise geometric faulting parameters due to earthquakes obtained by inverse problem solution based on GPS or InSAR observations is recommended to get more precise outputs. Postseimic motions were not modeled in this research since this effect is a function of time and its amplitude is just considerable for large earthquakes, beside that the amount of this effect is reduced with time. Anyway, the postseismic deformation modeling due to intense earthquakes with a large focal depth using Wang (2006) model is recommended. In this research, just the effects of secular, interseismic and coseismic motions were included in the model. To complete the model, it is recommended to consider the effects of the crustal motions associated with land subsidence, volcanic activity, postglacial rebound etc.
 
 

کلیدواژه‌ها [English]

  • GPS velocity field
  • Dislocation theory
  • Tectonics
  • reference frame
  • ITRF
  • WGS84
آقانباتی، ع.، 1383، زمین‌شناسی ایران: سازمان زمین‌شناسی و اکتشافات معدنی کشور.

بربریان، م.، 1374، نخستین کاتالوگ زلزله و پدیده‌های طبیعی ایران زمین: پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله.

راست­بود، ا.، وثوقی، ب.، 1389، بررسی تغییرشکل بین‌لرزه‌ای در ناحیه برخورد صفحه‌های زمین‌ساختی ایران، عربستان و آناتولی در منطقه خاورمیانه با استفاده از یک مدل تحلیلی: مجله ژئوفیزیک ایران، 4 (2)، 89-102.

نوری، س.، وثوقی، ب.، و ابوالقاسم، ا. م.، 1388، مدل‌سازی میدان جابه‌جایی هم‌لرزه یک گسل و تعیین حساسیت پارامترهای هندسی و فیزیکی مدل به میدان جابه‌جایی آن: مجله فیزیک زمین و فضا، 35 (1)، 59-73.

Aoki, Y., and Scholz C. H., 2003, Vertical deformation of the Japanese islands, 1996–1999: J. Geophys. Res., 108, B5, 2257.

Altamimi, Z., Sillard, P., Boucher, C., 2002, ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications, J. Geophys. Res., 107, B10, 2214, pp. 19.

Ambraseys, N., and Melville, C., 1982, A History of Persian Earthquakes: CambridgeUniversity Press, Cambridge.

Armijo, R., Flerit, F., King, G., and Meyer, B., 2003, Linear elastic fracture mechanics explains the past and present evolution of the Aegean: Earth and Planetary Science Letters, 217, 85-95.

Badekas, J., 1969, Investigations related to the establishment of a world geodetic system, Report 124, Department of Geodetic Science, Ohio State University, Columbus.

Bayer, R., Chéry, J., Tatar, M., Vernant, P., Abbassi, M., Masson F., Nilforoushan, F., Doerflinger, E., Regard, V., and Bellier, O., 2006, Active deformation in Zagros–Makran transition zone inferred from GPS measurements: Geophys. J. Int., 165, 373–381.

Boucher, C., Altamimi, Z., Sillard, P., and Feissel-Vernier M., 2004, The ITRF2000: IERS ITRS Centre, IERS Technical Note No.31, Verlag des Bundesamtes für Karthographic und Geodäsie, Frankfurt am Main.

Bursa, M., 1962, The theory for the determination of the non-parallelism of the minor axis of the reference ellipsoid and the inertial polar axis of the Earth, and the planes of the initial astronomic and geodetic meridians from observations of artificial Earth satellites: Studia Geophysica et Geodetica, 6, 209-214.

DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S., 1994, Effects of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions: Geophys. Res. Lett., 21, 2191-2194.

Djamour, Y., Vernant, P., Bayer, R., Nankali, H.R., Ritz, J.-F., Hinderer, J., Hatam, Y., Luck, B., Le Moigne, N., Sedighi, M., and Khorrami, F., 2010, GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran: Geophys. J. Int., 183, 1287-1301.

Djamour, Y., Vernant, P., Nankali, H. R., and Tavakoli, F., 2011, NW Iran-eastern Turkey present-day kinematics: Results from the Iranian permanent GPS network: Earth and Planetary Science Letters, 307, 27-34.

Flerit, F., Armijo, R., King, G., and Meyer, B., 2004, The mechanical interaction between the propagating North Anatolian Fault and the back-arc extension in the Aegean: Earth and Planetary Science Letters, 224, 347–362.

Gomberg J., and Ellis, M., 1994, Topography and tectonics of the central New Madrid seismic zone: Results of numerical experiments using a three-dimensional boundary-element program: J. Geophys. Res., 99, 20299-20310.

Haiyun, W., and Xiaxin, T., 2003, Relationships between moment magnitude and fault parameters: theoretical and semi-empirical relationships: Earthquake engineering and engineering vibration, 2,(2), 201-211.

Hefty, J., 2007, Geo-kinematics of central and south-east Europe resulting from combination of various regional GPS velocity fields:Acta Geodyn. Geomater., 4, 4 (148), 173-189.

Hessami, K., and Jamali, F., 2006. Explanatory Notes to the Map of Major Active Faults of Iran. Journal of Seismology and Earthquake Engineering (JSEE), 8, 1-11.

Hessami, K., Nilforoushan, F., and Talbot, C. J., 2006, Active deformation within the Zagros Mountains deduced from GPS measurements: Journal of the Geological Society, London, 163, 143–148.

Hollingsworth, J., Fattahi, M., Walker, R., Talebian, M., Bahroudi, A., Bolourchi, M. J., Jackson, J., and Copley, A., 2010, Oroclinal bending, distributed thrust and strike-slip faulting, and the accommodation of Arabia–Eurasia convergence in NE Iran since the Oligocene: Geophys. J. Int., 181, 3, 1214-1246.

Masson, F., Anvari, M., Djamour, Y., Walpersdorf, A., Tavakoli, F., Daignieres, M., Nankali, H., and Van Gorp, S., 2007, Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran: Geophys. J. Int., 170, 436–440.

Masson, F., Djamour, Y., Van Gorp, S., Chéry, J., Tatar, M., Tavakoli, F., Nankali, H., and Vernant, P., 2006, Extension in NW Iran driven by the motion of the SouthCaspianBasin: Earth and Planetary Science Letters, 252, 180–188.

McClusky, S., Balassanian, S., Barka A., Demir, C., Ergintav, S., Georgiev I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksöz, N., and Veis, G., 2000, Global positioning system constraints on the plate kinematics and dynamics in the eastern Mediterranean and Caucasus: J. Geophys. Res. 105, 5695–5719.

Meade, B. J., and Hager, B. H., 2005, Block models of crustal motion in southern California constrained by GPS measurements: J. Geophys. Res., 110, B03403.

Nowroozi, A. A., 1985, Empirical relations between magnitudes and fault parameters for earthquakes in Iran. Bull. Seis. Soc. Am., 75, 1327-1338.

Okada, Y., 1985, Surface deformation due to shear and tensile faults in a half space: Bulletin of the Seismological Society of America, 75, 1135–1154.

Pearson C., McCaffrey R., Elliott J. L., and Snay R., 2010, HTDP 3.0: Software for Coping with the Coordinate Changes Associated with Crustal Motion, Journal of Surveying Engineering, 136)2(, 80-90.

Peyret, M., Djamour, Y., Hessami, K., Regard, V., Bellier, O., Vernant, P., Daignières, M., Nankali, H., Van Gorp, S., Goudarzi, M., Chéry, J., Bayer, R., and Rigoulay, M., 2009, Present-day strain distribution across the Minab-Zendan-Palami fault system from dense GPS transects, Geophys. J. Int., 179)2(, 751-762.

Reilinger R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R., and Karam, G., 2006, GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions: J. Geophys. Res., 111, B05411.

Savage, J. C., 1988, Principal component analysis of geodetically measured deformation in Long Valley Caldera, eastern California: J. Geophys. Res., 93, 13,297-13,305.

Segall P., 2010, Earthquake and volcano deformation, Princeton University Press, 458 pp.

Sella, G.F., Dixon, G. F., and Mao, G.F., 2002, REVEL: a model for recent plate velocities from space geodesy: J. Geophys. Res., 107.

Snay, R.A., 1999, Using the HTDP software to transform spatial coordinates across time and between reference frames: Surveying and Land Information Systems,59(1), 15-25.

Steketee J. A., 1958, On Volterra's dislocation in a semi-infinite elastic medium: Can. J. Phys., 36, 192-205.

Tatar, M., Hatzfeld, D., Martinod, J., and Walpersdorf, A., Ghafori-Ashtiany, M., and Chéry, J., 2002, The present-day deformation of the central Zagros from GPS measurements: Geophys. Res. Lett., 29(19).

Tavakoli, F., Walpersdorf, A., Authemayou, C., Nankali, H. R., Hatzfeld, D., Tatar, M., Djamour, Y., Nilforoushan, F., and Cotte, N., 2008, Distribution of the right-lateral strike–slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities: Earth and Planetary Science Letters, 275, 342-347.

Vernant, P., Nilforoushan, F., Chéry, J., Bayer, R., Djamour, Y., Masson, F., Nankali, H., Ritz, J. F., Sedighi, M., and Tavakoli, F., 2004, Deciphering oblique shortening of central Alborz in Iran using geodetic data: Earth and Planetary Science Letters, 223, 177–185.

Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., and Chéry, J., 2004, Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman: Geophys. J. Int., 157, 381–398.

Molodensky, M., S., Eremeev, V., F., and Yurkina, M., I., 1962, Methods for Study of the External Gravitational Field and Figure of the Earth: Programme for the Translation of Scientific Publications, Jerusalem (Russian original 1960).

Wang, R., Lorenzo-Martin, F., and Roth, F., 2006, PSGRN/PSCMP - a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory: Computers and Geosciences, 32, 527–541.

Wdowinski, S., Bock, Y., Zhang, J., Fang, P., and Genrich, J., 1997, Southern California Permanent GPS Geodetic Array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the Landers earthquake: J. Geophys. Res., 102, 18,057-18,070.

Wells, D. L., and Coppersmith, K. J., 1994, New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement: Bulletin of the Seismological Society of America, 84, 974-1002.

Wolf, H., 1963, Geometric connection and re-orientation of three-dimensional triangulation nets: Bulletin Géodésique, 68, 165-169.

Zare, M., 1999, Contribution a l'etude des movements forts en Iran: du catalogue aux lois d'attenuation: These De L'universite Joseph Fourier, Grenoble, France.