بررسی اولیه تغییرات غلظت گاز رادون در چشمة آبگرم جوشان واقع در استان کرمان به‌منزلة پیش‌نشانگر زلزله برای زلزله‌های 9/4 ریشتری شهداد و 3/4 ریشتری اردیبهشت 1388 سیرچ

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان، کرمان، ایران

2 مرکز بین المللی علوم و تکنولوژی پیشرفته و علوم محیطی، کرمان

3 دانشگاه آزاد اسلامی، واحد کرمان، گروه فیزیک، کرمان، ایران

چکیده

یافتن روش‌های قابل اطمینان به‌منظور پیش‌بینی کوتاه‌مدت زمین‌لرزه‌‌‌ها از مهم‌ترین رهیافت‌هایی است که سال‌ها است دانشمندان به دنبال آن هستند. در این میان، نا‌هنجاری‌های ژئوشیمیایی، از جمله تغییرات در میزان گاز رادون خروجی از زمین، ناشی از فعالیت‌های زمین‌ساختی و لرزه‌زمین‌ساختی را می‌توان درحکم یکی از روش‌های نوین و قابل بررسی در این راستا معرفی کرد. از این رو، در این مقاله، ضمن معرفی اولین ایستگاه پایش پیوسته غلظت گاز رادون روی چشمه‌‌های آبگرم در کشور، زلزله‌‌های رویداده و داده‌‌های ثبت شده پیرامون غلظت گاز رادون ایستگاه فوق، در بازه‌‌های زمانی 11/2/88  تا 29/2/88 ، مورد بررسی قرار می‌‌گیرد. از میان زلزله‌‌های روی‌ داده در این مدت، تنها دو زلزله 9/4 و3/4 ریشتری، با فاصله رومرکزی 21 و 5 کیلومتری نسبت به ایستگاه پایش، که به‌‌ترتیب در تاریخ‌های 21/2/88 و 22/2/88 به وقوع پیوسته‌اند، قابلیت تاثیرگذاری روی غلظت گاز رادون  اندازه‌گیری شده را طبق مدل‌های تنش- واتنش موجود داشته‌‌اند. ثبت بی‌هنجاری در داده‌‌های  اندازه‌گیری شده غلظت گاز رادون، چند روز قبل از بروز این دو زلزله، می‌‌تواند بیانگر نقش پیش‌نشانگری گاز رادون برای زلزله‌های فوق باشد. مقادیر ثبت شده، دو  بی‌هنجاری با تغییرات نسبی 40 درصدی گاز رادون، به‌‌ترتیب یکی در روز 15/2/88 و دیگری در روز 19/2/88 را نشان می‌‌دهد. داده‌های فوق نیز همانند داده‌های دوره‌‌های پیشین، به‌‌خوبی نشان می‌دهد که بین تغییرات نسبی گاز رادون و رویداد زلزله در این منطقه، ارتباط وجود دارد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Preliminary investigation of the variation of radon concentration in the Jowshan hot spring in the SE of Iran as a precursor for the M 4.9 Shahdad and M 4.3 Sirch earthquakes on May, 2009

نویسندگان [English]

  • Ali Negarestani 1
  • Seyed Mehdi Hashemi 2
  • Farzin Naseri 2
  • Mojtaba Namvaran 1
  • Seyed Mohammad MusaviNasab 3
  • Habiballah Montazeri 2
چکیده [English]

Since the beginning of seismology, a hundred years ago, seismologists have always been hopeful to be able to predict earthquakes in order to help populations across the globe avoid destruction and casualties. However, earthquakes continue to occur without any warning.   
Soil and groundwater gas variations due to the change in stress related to seismotectonic activity are well documented and used extensively in seismotectonic studies, including fault tracing and seismic surveillance as a precursor. Radon has a more sensitivity than other precursory gases and is considered as the most appropriate gas form precursor.
The first continuous radon monitoring station in Iran, for assessment of radon as an earthquake precursor, was established in September 2007, in Jowshan hotspring (N 30°09'38.7" – E 57°35'57.5"), Kerman Province, SE of Iran. Jowshan complex is composed of six springs, which outflow through fractured limestone, along the Gowk fault. This fault is stretched from the southwest of Bam Plain to the west of Shahdad Town which is well-known for its reservoir-triggered seismicity and has an active history. Occurrence of more than 20 earthquakes M > 5 in the 20th century (According to IIEES earthquake catalogue). As an example, Bam earthquake with M 6.6 (According to USGS data) and more than 25000 victims on December 26, 2003, represents this active history. In this study, in order to measure radon concentration in the spring water, an Alpha Guard PQ 2000 PRO (Genitron Instruments) detector was used. This instrument with a resolution of 1 Bq/m3 is able to measure 222Rn concentration from 2 to 2000000 Bq/m3. Detection of Alpha (α) particles produced by radon decaying in the ionization chamber depends on the instrument. This detector, like the most of the radon detectors, has measured the concentration of radon in the gas phase - not in the liquid phase. Therefore, at the beginning, the radon must be transformed from liquid phase to gas phase. The detector was setup in the Jowshan hotspring outlet as shown in Figure 1, schematically. In this system, water enters into an exchange unit which acts as a flow stabilizer. Gaseous radon that leaves the spring water by diffusion is pumped into the detector. This instrument has humid sensitivity. Therefore, the air contains radon cross from humidity absorption chamber (Silica Gel). In this study, a sodium chloride crystal was used as a humidity absorber. Radon was detected every 10 minutes by mentioned instrument and the results were saved into the internal memory of detector.
There are different experimental equations concerning the relation between earthquake magnitude and its effective range on geo-gas variations. According to Dobrovolsky’s empirical relation (D=100.43M) and the stress-strain theory, strain distribution radii (D), depend on the earthquake magnitude (ML). Therefore, anomalies due to earthquakes can indicate whether precursor monitoring station lies in the stress - strain field. Three spike like radon anomalies have been observed several days prior the M 4.9 Shahdad and M 4.3 Sirch earthquakes that occurred on May 11 and 12, 2009, respectively. Location of Jowshan hot spring in the stress - strain field of 11/05/2009 and 12/05/2009 earthquakes in Shahdad and Sirch respectively, can be ascribed to the radon concentration anomalies on 05/05/ 2009 and 09/05/2009.
 

کلیدواژه‌ها [English]

  • Radon concentration
  • Earthquake
  • precursor
  • Jowshan hot spring
شاهپسندزاده، م. و حیدری، م.، 1375، بررسی مقدماتی لرزه‌خیزی، لرزه‌زمین‌ساخت و خطر رویداد زمین‌لرزه‌‌ – گسلش در پهنه استان کرمان، موسسه بین المللی زلزله‌‌شناسی و مهندسی زلزله.
عباس‌‌نژاد، ا. و داستانپور، م.، 1378، زلزله‌ها و زلزله‌خیزی استان کرمان، انتشارات مرکز کرمان‌‌شناسی.
Hedervari, P., 1977: Earthquake prediction. Engineering Geology; 11(2), 149-151.
Robert L, F., 1988: Radon in the environment—Opportunities and hazards. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 14(4), 421-435.
Thomas, D., 1988, Geochemical precursors to seismic activity. Pure and Applied Geophysics, 126(2), 241-266.
Virk, H. S. and Singh, B., 1993 Radon anomalies in soil-gas and groundwater as earthquake precursor phenomena. Tectonophysics, 227(1-4), 215-224.
King, C. Y., Zhang, W. and King, B. S., 1993, Radon anomalies on three kinds of faults in California. Pure and Applied Geophysics, 141(1),.111-124.
Berberian, M., Jackson, J. A., Fielding, E., Parsons, B. E., Priestley, K., Qorashi, M.,Talebian, M., Walker, R., Wright, T. J. and Baker, C., 2001, The 1998 March 14 Fandoqa earthquake (MW 6.6) in Kerman province, southeast Iran: re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of the Gowk fault zone: Geophys. J. Int. 146, 371-398.
Dobrovolsky, I. P., Zubkov, S. I. and Miachin, V. I. ,1979, Estimation of the size of the earthquake preparation zones: Pure and Applied Geophysics, 117, 1025-1044.
Fleischer, R. L. and Magro-Campero, A., 1985, Association of subsurface radon changes in Alaska and the northeastern United States with earthquakes:Geochemical et Cosmochemical Acta, 49, 1061-1071.
King, C. Y., 1980, Episodic Radon changes in subsurface soil-gas along active faults and possible relation to earthquakes: Journal of Geophysical Research, 85, 3065-3079.
Popit, A., Vapotic, J. and Dolenec, T., 2005, Geochemical and Geophysical monitoring of thermal waters in Slovenia in relation to seismic activity: Annals of Geophysics, 48(1), 73-83.
Segovia, N., De la Cruz Reyna, S., Mena, M., Ramos, E., Monnin, M. and Seidel, J. L., 1989, Radon in soil anomaly observed at Los Azufres Geothermal field, Michoacan: a possible precursors of the 1985 Mexico earthquake (MS=8.1): Natural Hazards, 1, 319-329.
Shapiro, M. H., Melvin, J. D., Copping, N. A., Tombrell, T. A. and Withcombe, J. H. ,1989, Automated radon- thoron monitoring for earthquake prediction research.
Diyun, C., Xingbao Y. and Ruiying, H., 2005, Indoor radon survey in indoor environments in Zhuhai city, China. Radiation Measurements; 39(2): 205-207.
Zhuo, W., Guo, Q., Chen, B. and Cheng, G., 2008, Estimating the amount and distribution of radon flux density from the soil surface in China. Journal of Environmental Radioactivity; 99(7), 1143-1148.
Harris, SA, Billmeyer, ER. and Robinson, MA., 2006; Evaluation of repeated measurements of radon-222 concentrations in well water sampled from bedrock aquifers of the Piedmont near Richmond, Virginia, USA: Effects of lithology and well characteristics. Environmental Research, 101(3), 323-333.
Vinson, DS, Vengosh, A., Hirschfeld, D. and Dwyer, GS., 2009; Relationships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA). Chemical Geology, 260(3-4), 159-171.
Borisov, VP. and Yakovleva, VS., 2005, Comparative analysis of radon sources’ contribution into total radon indoor levels for Altai and Tomsk regions of Russian Federation. Radiation Measurements; 40(2-6), 682-685.
Oikawa, S., N., Sanada, T., Ohashi, N., Uesugi, M., and Sato, K., et al., 2003, A nationwide survey of outdoor radon concentration in Japan. Journal of Environmental Radioactivity; 65(2), 203-213.
Toutain, J. P. and Baubron, J. C.,1999, Gas geochemistry and seismotectonics: a review, Tectonophysics J., 304, 1-27.
Negarestani, A., Setayeshi, S., Ghannadi-Maragheh, M. and Akashe, B., 2003, Estimation of the radon concentration in soil related to the environmental parameters by a modified Adaline neural network. Applied Radiation and Isotopes; 58(2), 269-273.
Berberian, M., Asudeh, I. and Arshadi, S., 1979, Surface rupture and mechanism of the Bob-Tangol (southeastern Iran) earthquake of 19 December 1977. Earth and Planetary Science Letters; 42(3), 456-462.
Moosavirad, SM., Janardhana, MR., Sethumadhav, MS., Moghadam, MR. and Shankara M., 2011, Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, source weathering and tectonic setting. Chemie der Erde-Geochemistry; 71(3), 279-288.
Ulomov, V. I. and Mavashev, B. Z., 1967, Forerunners of the Tashkent earthquake: Izvestia Akadamiyi Nauk Uzbekistan SSR, 188-200.
Woith, H., Pekdeger, A. and Zschau, J., 1991, Groundwater radon anomalies in space and time: a contribution to the joint Turkish- German earthquake prediction project.
Wyss, M., 1997, Second round of evaluations of proposed earthquake precursors: Pure and Appl. Geophys J., 149, 3-16.