تعیین پارامترهای بی‌هنجاری‌های پتانسیل خودزا با روش تبدیل هیلبرت

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

دانشگاه آزاد اسلامی واحد علوم وتحقیقات

چکیده

در این تحقیق برای تعیین پارامترهای ساختارهای مدفون زمین‌شناسی به روش پتانسیل خودزا از توابع تحلیلی، گرادیان مختلط و تبدیل هیلبرت استفاده شده است. تبدیل هیلبرت را می‌توان از راه‌های متفاوتی همچون روش تبدیل فوریه و هما‌میخت عملی ساخت. در این تحقیق از عملگر هما‌میخت برای تبدیل هیلبرت پتانسیل اجسام هندسی کره، استوانه افقی استفاده شده است. پارامترهای ساختارهای مدفون بی‌هنجاری‌های پتانسیل خودزا (عمق، گشتاوردوقطبی، زاویه قطبیدگی‌‌ و فاکتور شکل) از راه تعیین ریشه‌ها و نقاط تقاطع تابع تبدیل هیلبرت، گرادیان کامل پتانسیل بی‌هنجاری‌های مدفون به‌دست می‌آید. در این تحقیق این روش برای داده‌های مصنوعی بدون نوفه مورد بررسی قرار گرفته است.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Determination of parameters of self-potential anomalies using Hilbert transform method

نویسندگان [English]

  • Mohammad Rasool Nikbakhsh
  • Mirsattar Meshinchi Asl
چکیده [English]

Although the Hilbert Transform (HT) has been used in electrical engineering and signal analysis for a long time (Bracewell, 1965), its application in geophysical studies started in 1970's. The HT is a method of direct solution. The aim of using the HT in geophysical studies is to obtain more than one equation containing the same structural parameters by utilizing the complex gradients of the available data. The roots and common intersection points of the anomaly and the complex gradients of the anomaly have been used to determine the structural parameters. Therefore, a ± 1 error sampling interval was expected for the determinations. In order to minimize the error, the most appropriate sampling interval should be chosenUp to the present time, the HT has been used extensively only in magnetic and seismic studies. But in the aforementioned studies, it has been used mostly as a Fourier Transform (FT). Taner (1979), in his study, obtained the HT through convolution by using a normalized Hilbert time-domain operator truncated to 61 points The Hilbert Transform (HT) is a mathematical transform function which shifts the phase of a signal as much as π/2 without changing its amplitude. With this definition HT is a linear system, which transforms odd and even functions, with equal amplitude to each other in space or frequency field. Since HT is a linear set, the system should have an input signal, a transfer function and an output function. The HT can be applied to the Fourier Transform (FT) and convolution methods.. In this study, the model parameters of which were unsolved so far, self-potential (SP) methods were determined with HT using convolution and FT methods and the results were compared. In this study, Structural parameters were determined directly from the geophysical anomalies using analytical functions of the complex gradients and the Hilbert Transforms can be applied to reach the above-mentioned situation. The Hilbert Transforms, which can be carried out in two different ways using the Fourier Transform and convolution methods, were used to provide the convolution method between the complex gradients of the anomaly. Structural parameters (electric dipole moment, polarization angle and depth) were then determined from the solutions of the constructed equations. This method was used for two models, a sphere and a horizontal cylinder, with synthetic data without any random noise. The results of this study are as follow: (1) The parameters were determined exactly for the theoretical models using the HT method. Especially, the location of the structure, which had not been determined before, was obtained precisely and directly from the anomaly for the self-potential method. (2) Before the interpretation of the field data with the HT method, the anomaly should be refined from noise. If this procedure has not been carried out, pseudo roots could be formed in the complex gradients of anomaly.
 
 

کلیدواژه‌ها [English]

  • Complex gradients
  • Hilbert transforms
  • Self-potential
  • convolution
نیک‌بخش، م. ر.، و مشین‌چی‌اصل، م. س.، 1390، تعیین عمق و نیم­پهنای صفحه شیب‌دار توسط پتانسیل خودزا با استفاده از روش میانگین متحرک ثانویه با کاربرد منحنی­های پنجره­ای: مجله ژئوفیزیک ایران، 5(2)، 86-96.

Abdelrahman, E .M., and El-Araby, T. M ., 1997, An iterative approach to depth determination from moving average residual self-potential anomalies J. King Abdulaziz Univ: Earth Science, 9(3), 26–97

Akgun, M., 2000, Estimation of some bodies parameters from the self potential method using Hilbert transform: Journal of the Balkan geophysical society, 4(2), 29-44.

Bracewel, R. M, 1985,The Fourier Transform and its Applications: Mac Graw-Hill, New York, 268 p.

Green, R., and Stanley, J. M., 1975, Application of a Hilbert transform method to the interpretation of surface - vehicle magnetic data: Geophysical Prospecting, 23, 18-27.

Hafez, M. A., 2009, A new approach to interpret self-potential anomaly over a two dimensional inclined sheet using complex gradient analysis: J Geophys Eng, 2, 97–102

Murthy, S. .B. V., and Haricharan, P., 1985, Nomogram for the spontaneous potential profile over sheet-like and cylindrical two-dimensional sources: Geophysics, 50, 1127–35

Pinar, R., 1985, Karmaşik gradient yonteminin duşey sureksizliklere uygulanmasi ve bilgisayarlarla gerçeklestirimi: E. Ü. Bilgisayar Arastirma ve Uygulama Merkezi Dergisi, Cilt: 8, Sayi:1. (In Turkish with English Abstract)

Rao, A. D., Babu, R. H. V., and Sivakumar, S. G. D., 1982, A Fourier transform method for the interpretation of self-potential anomalies due to two-dimensional inclined sheet of finite depth extent: Pure Appl. Geophys, 120, 365–74.

Sundararajan, N., Arun Kumar, I., Mohan, N. L., and Seshagiri Rao, S. V., 1990. Use of the  Hilbert transform.

Taner, M. T., Koehler, F., and Sheriff, R. E., 1979, Complex seismic trace analysis: Geophysics, 44, 1041-1063.

Yungul, S., 1950,Interpretation of spontaneous polarization anomalies caused by spherical ore bodies: Geophysics, 15, 237–46