تعیین جزئیات گسیختگی زمین‌لرزه‌های 18 ژوئن 2007 کهک و 27 سپتامبر 2010 شمال کازرون با استفاده از تصویرسازی معکوس امواج P دورلرز

نوع مقاله : مقاله پژوهشی‌

نویسندگان

موسسه ژئوفیزیک دانشگاه تهران

چکیده

یکی از روش‌هایی که امروزه توجه بسیاری از زلزله‌شناسان را جلب کرده است، روش تصویرسازی معکوس (back-projection) در تعیین جزئیات گسیختگی از قبیل گسترش (extension)، سرعت (velocity)، جهت (direction) و مدت‌زمان گسیختگی (duration) است. توانایی پیاده‌سازی بر روی داده با باندهای فرکانسی نسبتاً پهن و سادگی نسبی محاسبات از مزیت‌های این ‌روش نسبت به روش‌های مرسوم تعیین گسیختگی از قبیل روش گسل محدود (finite fault) است. در این تحقیق تصویرسازی معکوس با استفاده از داده ایستگاه‌های سرعت‌نگار باند پهن شبکه‌های لرزه‌نگاری جهانی که نسبت به رویدادها در فاصله دورلرز (teleseismic) قرار گرفته‌اند، برای دو زمین‌لرزه 18 ژوئن 2007 کهک و 27 سپتامبر 2010 شمال کازرون محاسبه شده است. از آنجا که روش تصویرسازی معکوس بسیار به هندسه آرایه نسبت به رومرکز رویداد حساس است، ابتدا با استفاده از تابع پاسخ آرایه، آرایه با کمترین اثر مصنوعی انتخاب می‌شود. نتایج نشان می‌دهد که برای زمین­لرزه کهک، جبهه گسیختگی با سرعت متوسط 006/0± ۹/۱ کیلومتر بر ثانیه از جنوب غربی کانون زمین­لرزه در مدت‌زمان 1 ± ۸ ثانیه به سمت شمال شرقی حرکت می­کند. ابعاد ناحیه گسیختگی منطقه­ای با مساحت ۵/۳۹ کیلومترمربع را پوشش می­دهد. نتایج برای زمین‌لرزه شمال کازرون سرعت گسیختگی معادل با 003/0± ۶/۱ کیلومتر بر ثانیه و ناحیه گسیختگی با مساحت تقریبی ۱۹۳ کیلومترمربع را نشان داد. جبهه گسیختگی در مدت‌زمان 1 ±۱۵ ثانیه از جنوب غربی به سمت شمال شرقی منتشر می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Rupture details of 18 June 2007 Kahak and 27 September 2010 North of Kazeroon earthquakes imaged by back-projection of teleseismic P-wave

نویسندگان [English]

  • mahsa chenari
  • zaher hosein shomali
Institute of Geophysics, University of Tehran
چکیده [English]

For large earthquakes, rupture characteristics including rupture velocity and fault extension are important parameters that reflect the fault properties and complexities. One of the most important tasks for earthquake monitoring agencies is to determine a finite source rupture model as quickly as possible so that a map of regions with the strongest shaking can be provided to guide emergency response and rescue. In many cases, the epicenter is not the most severely damaged region. One of the recently used methods to image the source and rupture details is back-projection (reverse time migration), which has some advantages comparing to traditional methods such as finite-fault source inversion; since it is much faster (the computation is relatively easier than inversion) and it can be applied to different frequency bands, even high frequencies, and the only a priori information required is a radial velocity model and a hypocentral estimate. In this method, seismic arrays at teleseismic distances are used. Since the back-projection technique is sensitive to the array geometry, array response function (ARF) is used to choose the array with the least artifact. In order to compute the ARF, the process is the same except the fact that the synthetic seismograms are used instead of real seismograms. To investigate the rupture propagation and energy release of two earthquakes, 2007/06/18 Mw 5.9, Kahak, and 2010/09/27 Mw 5.5, north of Kazeroon, a back-projection of teleseismic P-wave with X4 (China) and YP (northeast China) seismic network arrays, vertical component data high-pass filtered at 1.0 Hz are used. It is assumed that the first part of the seismograms is due to the failure at hypocentre and later parts come from rupture front. To determine the rupture propagation that is necessary to know which point in source area has caused the radiation of energy, a grid of points in source area is set. This grid covers most of the aftershocks region. The back-projection analysis used in this study does not have very good depth resolution, so that grid is 2-Dimensional and the depth of grid is constant; hence, the waveforms are stacked at every time window for all grid points and the back-projection method determines which grid points are the source of seismic radiation in each time window of the teleseismic P waves. In this method, seismograms are stacked for grid point to obtain a direct image of the source. Stacking procedures sums the energy that is radiated from the grid point constructively and cancels out other energy patterns present in the seismograms. Resulting maps show the squared amplitudes of the stacks, which are proportional to the radiated high frequency seismic energy. According to the results, for Kahak earthquake, the rupture is in order of 1.9±0.006 km-1 and the rupture front propagates southwest to northeast about 8±1 seconds. For north of Kazeroon earthquake, the rupture velocity is 1.6±0.003 km and the total time of propagation is 15±1 seconds.  The back-projection method is usually used to determine slip distribution of  large earthquakes  using a very dense array. However in this study we show that the back-projection method can even be extended to study moderate size earthquakes.

کلیدواژه‌ها [English]

  • back-projection
  • rupture details
  • Kahak earthquake
  • north of Kazeroon earthquake
  • array response function
شیخ‌الاسلامی، م.، جوادی، ح. ر.، اسدی، م.، آقا حسینی، ا.، کوه‌پیما، م.، و وحدتی، ب.، 1392، دانشنامه گسل‌های ایران: تهران، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور.
Babaahmadi, A., Safaei, H., Yassaghi, A., Vafa, H., Naeimi, A., Madanipour, S., and Ahmadi, M., 2010, A study of Quaternary structures in the Qom region, West central Iran: Journal of Geodynamics, 50, 355-367.
Berberian, M., 1976, Contribution to the Seismotectonics of Iran (part II-III): In commemoration of the 50th anniversary of the Pahlavi dynasty (No. 39). Ministry of Industry and Mines, Geological Survey of Iran, Tectonic and Seismotectonic Section.
Ishii, M., Shearer, P. M., Houston, H., and Vidale, J. E., 2005, Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array: Nature, 435(7044), 933-936.
Ishii, M., Shearer, P. M., Houston, H., and Vidale, J. E., 2007, Teleseismic P wave imaging of the 26 December 2004 Sumatra-Andman and 28 March 2005 Sumatra earthquake ruptures using the Hi-net array: Journal of Geophysical Research, 112, B11307.
Kanamori, H., 1977, The energy release in great earthquakes: Journal of Geophysical Research, 82(20), 2981-2987.
Kennett, B. L. N., and Engdahl, E. R., 1991, Travel times for global earthquake location and phase identification: Geophysical Journal International, 105(2), 429-465.
Kiser, E., Ishii, M., Langmuir, C. H., Shearer, P. M., and Hirose, H., 2011, Insights into the mechanism of intermediate depth earthquakes from source properties as imaged by back projection of multiple seismic phases: Journal of Geophysical Research: Solid Earth, (1978–2012), 116(B6).
Kruger, F. and Ohrnberger, M., 2005, Tracking the rupture of the Mw=9.3 Sumatra earthquake over 1150 km at teleseismic distance: Nature, 435, 937–939.
Lay, T. and Wallace, T. C., 1995, Modern Global Seismology, 58, Academic Press.
McFadden, P. L., Drummond, B. J., and Kravis, S., 1987, The Nth-root stack: a cheap and effective processing technique: Exploration Geophysics, 18(1/2), 135-137.
Olson, A. H., and Apsel, R. J., 1982, Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake: Bulletin of the Seismological Society of America, 72(6A), 1969-2001.
Reif, C., Masters, G., Shearer, P., and Laske, G., 2002, Cluster analysis of long-period waveforms: Implications for global tomography. EOS, Transactions American Geophysical Union, 83(47), 954.
Xu Y., K.D. Koper, O. Sufri, L. Zhu, and A. Hutko, Rupture imaging of the Mw 7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P waves, Geochem. Geophys. Geosyst., 10, 1-17. ,Zhang, H. and Ge, Z., 2010, Tracking the rupture of the 2008 Wenchuan earthquake by using the relative back-projection method: Bulletin of the Seismological Society of America, 100(5B), 2551-2560.