ارزیابی مشاهدات دمای درخشندگی ماهواره مایکروویو SMOS در مقایسه با داده‌های شبیه‌سازی شده با مدل L-MEB

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه مهندسی آب، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه فیزیک فضا، دانشگاه تهران، تهران، ایران

چکیده

مأموریت اسموس (SMOS)، نخستین مأموریت ماهواره­ای آژانس­ فضایی اروپا (ایسا) برای پایش جهانی رطوبت خاک، در سال 2009 آغاز شد. این ماهواره حامل اولین تابش­سنج مایکروویو نوار-L است که دماهای درخشندگی چندزاویه­ای با پوشش جهانی را در سطح زمین برآورد می‌­کند. هدف پژوهش حاضر ارزیابی داده­های دمای درخشندگی قطبش افقی (TBh) و قطبش قائم (TBv) محصولات قطبیده کامل چندزاویه‌ای ماهواره اسموس (MIR_SCLF1C) است. در این تحقیق داده­های اسموس از طریق مقایسه با داده­های شبیه­سازی شده در پنج ایستگاه­ هواشناسی در غرب و جنوب غرب کشور طی سال­های 2012 و 2013 ارزیابی شده است. شبیه­سازی دماهای درخشندگی TBh  و TBv با استفاده از مدل گسیل مایکروویو نوار L-از زیست­کره (مدل L-MEB) در ایستگاه­های مطالعاتی صورت گرفت که نتیجه آن دستیابی به پنج سری داده مرجع دمای درخشندگی برای ارزیابی مشاهدات اسموس بود. نتایج ارزیابی دماهای درخشندگی اسموس نشان داد که داده­های اسموس در ایستگاه­های اهواز، سرارود و سرابله دارای مقداری کم­برآوردی و در ایستگاه­های داراب و اکباتان مقداری بیش­برآوردی هستند. تحلیل مقادیر RMSD مشخص کرد که داده­های TBh اسموس در ایستگاه­های اهواز، سرابله و داده­های TBv اسموس در ایستگاه­های اهواز، داراب و سرابله بیشترین دقت را دارند. همچنین کمترین مقادیر cRMSD داده­های دمای درخشندگی TBh  و TBv اسموس مربوط به ایستگاه‌های اهواز و داراب است. تحلیل ضرایب همبستگی بین مشاهدات اسموس و داده­های شبیه‌سازی شده بیانگر همبستگی خوب (9/0-8/0 RTBh = و 93/0-81/0RTBv = ) بین داده­ها در همه ایستگاه­های مطالعاتی بود. در مجموع یافته­های حاصل از این پژوهش اطلاعات با ارزشی در خصوص خطاها و عدم قطعیت­های محصولات دمای درخشندگی اسموس در محدوده مطالعاتی ارائه داده که به‌عنوان یک تحقیق مرجع برای استفاده از محصولات رطوبت خاک اسموس در مطالعات هواشناسی و آب­شناسی کاربرد دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of brightness temperatures observations from SMOS microwave satellite in comparison with L-MEB model simulations data

نویسندگان [English]

  • mozhdeh jamei 1
  • mohammad mousavi baygi 2
  • Amin Alizadeh 2
  • Parviz Irannejad 3
1 Ferdowsi University Of Mashhad, Mashhad, Iran
2 Water Engeenering Department, Ferdowsi University Of Mashhad , Mashhad, Iran
3 Space Physics Department, University of Tehran, Tehran, Iran
چکیده [English]

The European Space Agency (ESA’s) Soil Moisture and Ocean Salinity (SMOS) satellite mission was launched in November 2009. SMOS carries the first L-band (1.4 GHz) 2-D synthetic aperture microwave radiometer that produces multi-angular dual polarized (or fully polarized) brightness temperature. The objective of SMOS mission is to provide global surface soil moisture maps over the land surfaces with an accuracy of 0.04 m3m−3. The SMOS soil moisture retrieval algorithm was developed, which processes Level 1C products (multi-angular brightness temperatures) to Level 2 SM products (soil moisture maps). This algorithm is based on the comparison between the brightness temperatures from SMOS and the simulated brightness temperatures data (simulated TB) using L-MEB model. Thus, the evaluation of SMOS brightness temperatures is a necessary step before using of Level 2 Soil Moisture products. Therefore, the objective of this research is to evaluate the horizontal and vertical full polarized brightness temperatures data (TBh, TBv) from the SMOS MIR_SCLF1C products at the five meteorological stations in the west and southwest of Iran. Evaluation of SMOS brightness temperature data (SMOS TB) was done through a comparison between the SMOS TB and simulated TB from the L-MEB model. The SMOS MIR_SCLF1C (Level 1C Full Polarization Land Science measurements) products, which were provided through the ESA, contains the multi-angular brightness temperatures at the top of the atmosphere in the antenna polarization reference frame. In this study, the MIR_SCLF1C products, version 505 for the period 2012-2013 were evaluated. The ESA’s SMOS Matlab codes on Linux was used to reading and deriving TB, Incidence angles, Geometric and Faraday rotations and other required data from MIR_SCLF1C products.
The L-MEB (L-band Microwave Emission of the Biosphere) model is the radiative transfer model, which has been specifically developed to simulate the L-band microwave emission (brightness temperature) over land surfaces. In this research, the simulation of TB (TBh, TBv) at the five meteorological stations was carried out using L-MEB model (MATLAB function) and ground-based measurements. The model was simulated TB at the Earth’s surface reference. Therefore, SMOS TB data was projected from the antenna reference frame to the Earth’s surface reference frame using an algorithm provided by the CESBIO (Centre d’Etudes Spatiales de la BIOsphére) team. Four statistical metrics and Taylor diagram were used for the evaluation of results; the Root Mean Squared Difference (RMSD), the centered Root Mean Square Difference (cRMSD), the Mean Bias Error or bias and the correlation coefficient (R).The Taylor diagrams are used to represent three statistical metrics (R, cRMSD and standard deviation) on two dimensional plots to graphically describing how closely SMOS TB matches simulated TB.
Based on the research algorithm, the Evaluation model for the SMOS brightness temperatures data (TBh, TBv) was obtained. The Evaluation model was run for five metrological stations and simulated TB data from L-MEB model and SMOS BT from the MIR_SCLF1C product was saved as the output of the model to evaluation.
The results of the comparison between the SMOS TBh, TBv data and simulated TBh, TBv show that SMOS TB have an underestimation at Ahvaz, Sararod, Sarableh stations, whereas an overestimation of the SMOS BT was detected at Darab, Ekbatan stations. According to RMSD results, the SMOS TBh data at Ahvaz, Sarableh stations and the SMOS TBv data at Ahvaz, Darab, Sarableh stations have the highest accuracy.
The Taylor diagrams shows the strong correlation (RTBh = 0.8-0.9 and RTBv =0.81-0.93) between the SMOS TB and simulated TB data at all stations. Besides, the lowest value of the cRMSD of the SMOS TB data was obtained at Ahvaz (TBh =5.34, TBv = 5.67 K) and Darab stations (TBh =8.54, TBv = 5.9 K). In addition, these diagrams indicate that the standard deviation of SMOS TBh data at Sarableh, Ahvaz, Sararod stations and SMOS TBv data at Sarableh, Darab, Ahvaz stations are closer to the simulated TB data than other stations. Overall, the findings of this paper give valuable information about the uncertainties and errors of SMOS brightness temperatures data (MIR_SCLF1C) in the study area. Therefore, this research could be as a reference for using the SMOS soil moisture products (Level 2 Soil Moisture) in hydrology and meteorology studies in Iran.

کلیدواژه‌ها [English]

  • SMOS satellite
  • passive microwave
  • L- Band
  • brightness temperatures
  • L-MEB model
Al-Yaari, A., Wigneron, J. P., Ducharne, A., Kerr, Y., De Rosnay, P., De Jeu, R., Govind, A., Al Bitar, A., Albergel, C., and Munoz-Sabater, J., 2014a, Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates: Remote Sensing of Environment, 149, 181-195.(a)
Al-Yaari, A., Wigneron, J. P., Ducharne, A., Kerr, Y., Wagner, W., De Lannoy, G., Reichle, R., Al Bitar, A., Dorigo, W., and Richaume, P., 2014b, Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land): Remote Sensing of Environment, 152, 614-626.(b)
Al-Yaari, A., Wigneron, J. P., Kerr, Y., Rodriguez-Fernandez, N., O'Neill, P., Jackson, T., De Lannoy, G., Al Bitar, A., Mialon, A., and Richaume, P., 2017, Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets: Remote Sensing of Environment, 193, 257-273.
Al Bitar, A., Leroux, D., Kerr, Y. H., Merlin, O., Richaume, P., Sahoo, A., and Wood, E. F., 2012, Evaluation of SMOS soil moisture products over continental US using the SCAN/SNOTEL network: IEEE Transactions on Geoscience and Remote Sensing, 50 (5), 1572-1586.
Bircher, S., Balling, J. E., Skou, N., and Kerr, Y. H., 2012, Validation of SMOS brightness temperatures during the HOBE airborne campaign, Western Denmark: IEEE Transactions on Geoscience and Remote Sensing, 50 (5), 1468-1482.
Collow, T. W., Robock, A., Basara, J. B., and Illston, B. G., 2012, Evaluation of SMOS retrievals of soil moisture over the central United States with currently available in situ observations: Journal of Geophysical Research, Atmospheres, 117, D09113.
Dall'Amico, J. T., Schlenz, F., Loew, A., and Mauser, W., 2012, First Results of SMOS Soil Moisture Validation in the Upper Danube Catchment: EEE Transactions on Geoscience and Remote Sensing, 50, 1507-1516.
Grant, J. P., Wigneron, J. P., Van de Griend, A. A., Guglielmetti, M., Saleh, K., and Schwank, M., 2007, Calibration of L-MEB for soil moisture retrieval over forests:Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007.
Holl, G., 2012, Microwave and infrared remote sensing of ice clouds: measurements and radiative transfer simulations: (Licentiate thesis), Luleå University of Technology.
Kerr, Y. H., 2007, Soil moisture from space, Where are we?: Hydrogeology Journal, 15(1), 117-120.
Kerr, Y. H., Waldteufel, P., Richaume, P., Wigneron, J. P., Ferrazzoli, P., Mahmoodi, A., Al Bitar, A., Cabot, F., Gruhier, C., and Juglea, S. E., 2012, The SMOS soil moisture retrieval algorithm: EEE Transactions on Geoscience and Remote Sensing, 50 (5), 1384-1403.
Kerr, Y. H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F. O., Boutin, J., Escorihuela, M. J., Font, J., Reul, N., and Gruhier, C., 2010, The SMOS mission: New tool for monitoring key elements ofthe global water cycle: Proceedings of the IEEE, 98 (5), 666-687.
Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Martinuzzi, J. M., Font, J., and Berger, M., 2001, Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission: EEE Transactions on Geoscience and Remote Sensing, 39(8), 1729-1735.
Kornelsen, K. C., and Coulibaly, P., 2015, Reducing multiplicative bias of satellite soil moisture retrievals: Remote Sensing of Environment, 165, 109-122.
Leduc-leballeur, M., Picard, G., Mialon, A., Arnaud, L., Lefebvre, E., Possenti, P., and Kerr, Y., 2015, Modeling L-Band Brightness Temperature at Dome C in Antarctica and Comparison With SMOS Observations: IEEE Transactions on Geoscience and Remote Sensing, 53(7), 4022-4032.
Leroux, D. J., Kerr, Y. H., Bitar, A. A., Bindlish, R., Member, S., Jackson, T. J., Berthelot, B., and Portet, G., 2014, Comparison Between SMOS, VUA, ASCAT, and ECMWF Soil Moisture Products Over Four Watersheds in U.S.: IEEE Transactions on Geoscience and Remote Sensing, 52(3),1562-1571.
McNally, A., Husak, G. J., Brown, M., Carroll, M., Funk, C., Yatheendradas, S., Arsenault, K., Peters-Lidard, C., and Verdin, J. P., 2015, Calculating Crop Water Requirement Satisfaction in the West Africa Sahel with Remotely Sensed Soil Moisture: Journal of Hydrometeorology, 16, 295-305.
Mialon, A., Richaume, P., Leroux, D., Bircher, S., Bitar, A. A., Pellarin, T., Wigneron, J. P., and Kerr, Y. H., 2015, Comparison of Dobson and Mironov Dielectric Models in the SMOS Soil Moisture Retrieval Algorithm: IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3084-3094.
Montzka, C., Bogena, H. R., Weihermüller, L., Jonard, F., Bouzinac, C., Kainulainen, J., Balling, J. E., Loew, A., Amico, J. T., Rouhe, E., Vanderborght, J., and Vereecken, H., 2013, Brightness Temperature and Soil Moisture Validation at Different Scales During the SMOS Validation Campaign in the Rur and Erft Catchments, Germany, IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1728-1743.
Pan, M., Sahoo, a. K., Wood, E. F., Al Bitar, A., Leroux, D., and Kerr, Y. H., 2012, An Initial Assessment of SMOS Derived Soil Moisture over the Continental United States: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(5), 1448-1457.
Pinori, S., Crapolicchio, R., and Mecklenburg, S., 2008, Preparing the ESA-SMOS (soil moisture and ocean salinity) mission-overview of the user data products and data distribution strategy: Microwave Radiometry and Remote Sensing of the Environment, MICRORAD 2008.
Schalie, R. V. D., Kerr, Y. H., Wigneron, J. P., Rodríguez-Fernández, N. J., Al-Yaari, A., and Jeu, R. A. M. D., 2016, Global SMOS Soil Moisture Retrievals from The Land Parameter Retrieval Model: International Journal of Applied Earth Observation and Geoinformation, 45, 125-134.
Schlenz, F., Dall'Amico, J. T., Loew, A., and Mauser, W., 2012, Uncertainty Assessment of the SMOS Validation inUpper Danube Catchment: IEEE Transactions on Geoscience and Remote Sensing, 50, 1517-1529.
Secretariat, G. C. O. S., 2009, Implementation plan for the global observing system for climate in support of the UNFCCC (2010 Update).
Taylor, K. E., 2001, Summarizing multiple aspects of model performance in a single diagram: Journal of Geophysical Research, Atmospheres, 106(D7), 7183-7192.
Ulaby, F. T., Moore, R. K., and Fung, A. K.,1986, Microwave remote sensing active and passive-volume III, from theory to applications: Massachusettes, Artech House.
Wigneron, J. P., Chanzy, A., Kerr, Y. H., Lawrence, H., Shi, J., Escorihuela, M. J., Mironov, V., Mialon, A., Demontoux, F., and De Rosnay, P., 2011, Evaluating an improved parameterization of the soil emission in L-MEB: Geoscience and Remote Sensing, IEEE Transactions, 49(4), 1177-1189.
Wigneron, J. P., Kerr, Y., Waldteufel, P., Saleh, K., Escorihuela, M. J., Richaume, P., Ferrazzoli, P., De Rosnay, P., Gurney, R., and Calvet, J. C., 2007, L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields: Remote Sensing of Environment, 107(4), 639-655.
Wigneron, J.-P., Schwank, M., Baeza, E. L., Kerr, Y., Novello, N., Millan, C., Moisy, C., Richaume, P., Mialon, A., and Al Bitar, A., 2012, First evaluation of the simultaneous SMOS and ELBARA-II observations in the Mediterranean region: Remote Sensing of Environment, 124, 26-37.
Zeng, J., Li, Z., Chen, Q., Bi, H., Qiu, J., and Zou, P., 2015, Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations: Remote Sensing of Environment, 163, 91-110.