مدل‌‌سازی سرعت گروه موج سطحی ریلی با استفاده از الگوریتم تبرید شبیه‌سازی-شده در کنار وارون‌سازی داده‌های گرانی به‌منظور برآورد تغییرات عمق موهو، ساختار سرعت موج برشی و چگالی در پوسته و گوشته بالایی منطقه مکران

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

2 گروه فیزیک زمین، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

3 دانشکده علوم زمین، دانشگاه پاریس، پاریس، فرانسه

چکیده

هدف از این مطالعه، به‌دست‌آوردن تصاویری دقیق‌تر از سرعت موج برشی و فشارشی و چگالی در پوسته و گوشته بالایی در منطقه مکران به‌کمک مدل­سازی سرعت گروه امواج سطحی ریلی با استفاده از الگوریتم تبرید شبیه‌سازی­شده است. براساس مطالعات گذشته، حساسیت امواج سطحی به چگالی، بسیار کمتر از حساسیت آن به سرعت امواج برشی و فشارشی است؛ ازاین‌رو، در روش وارون­سازی داده­های گرانی، از نتایج مدل‌سازی سرعت گروه امواج سطحی ریلی استفاده می­شود تا نقشه‌های تغییرات چگالی و عمق موهو با دقت بیشتری ترسیم شوند. در این پژوهش، ابتدا الگوریتم ذکرشده روی دو مدل مصنوعی بدون نوفه و همراه با نوفه اعمال شد. برای مدل­های مصنوعی، نتایج این روش با دقت زیادی مدل اولیه را تخمین زدند؛ بنابراین این روش بر داده­های واقعی اعمال و در وارون­سازی داده­های گرانی که با استفاده از نتایج مدل­سازی سرعت گروه امواج سطحی ریلی انجام شد، تغییرات چگالی و عمق موهو محاسبه شد. دلیل استفاده از دو مجموعه داده در این مطالعه این است که داده­های سرعت گروه امواج سطحی ریلی، حساسیت خوبی به تغییرات مرزی سرعت موج برشی و فشارشی دارند، اما نسبت به چگالی حساسیت کمی دارند؛ بنابراین با استفاده از داده گرانی می­توان حساسیت نسبت به چگالی را هم افزایش داد. نتایج به‌کارگیری داده­های واقعی، نشان‌ از افزایش تدریجی ضخامت پوسته از جنوب به شمال در زون مکران است. مقدار بیشینه این افزایش، حدود 48 تا 50 کیلومتر زیر آتشفشان تفتان- بزمان برآورد می­شود. سرعت زیاد موج برشی و مقادیر زیاد چگالی در پوسته دریای عمان حاکی از اقیانوسی بودن آن است که با حرکت به سمت شمال و قاره‌ای شدن پوسته، مقدار این سرعت و چگالی کاهش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Rayleigh wave group velocity modeling using Simulated Annealing algorithm and gravity data inversion to estimate the variations of Moho depth, shear wave velocity and density structure of the crust and upper mantle in Makran region

نویسندگان [English]

  • Somayeh Abdollahi 1
  • Vahid Ebrahimzadeh Ardestani 2
  • Hermann Zeyen 3
1 Institute of Geophysics, University of Tehran,Tehran, Iran
2 Earth Physics Department, Institute of Geophysics, University of Tehran, Tehran, Iran
3 UMR 4818 GEOPS, Université Paris-Sud, CNRS, Université Paris-Saclay, bât. 504, 91405 Orsay, France
چکیده [English]

In this study, Simulated Annealing algorithm is applied on Rayleigh wave group velocities to image the density variations and shear and compressional wave velocities structure of the crust and upper-mantle of Makran subduction zone. Based on previous studies, surface wave dispersion measurements are primarily sensitive to seismic shear wave velocities. However, it has been proved that the sensitivity to compressional wave velocity is significantly smaller than the sensitivity to shear wave velocity. Also the sensitivity function for the density is smaller than the one for the shear wave velocity. Therefore, shear wave velocity variations are mainly the model parameters in surface wave dispersion analysis. Simulated Annealing is a probabilistic technique for finding the global optimum of a given function. It is especially useful to approximate global optimization in a large search space. The Simulated Annealing method like the Monte-Carlo method, samples the whole model space and can avoid getting stuck in local minima.To evaluate calculation efficiency and effectiveness of Simulated Annealing algorithm, two noise-free and two noisy (10% of white Gaussian noise) synthetic data sets are firstly inverted. Then, a real data from Makran region is inverted to examine the applicability and robustness of the proposed approach on real surface wave data.
In next step, gravity data inversion was applied with a priori information based on surface wave analysis results to obtain Moho depth variations and crustal density structure. The reason for using gravity data set is that surface waves group velocity is sensitive to average velocity variations and has a good lateral sensitivity, whereas gravity anomaly is sensitive to depth variations of discontinuities and has a good vertical resolution.
Our results show that the Moho depth across the Makran subduction zone increases from the Oman seafloor and Makran forearc setting to the volcanic arc. Generally, the crust in the western Makran is thicker than the eastern part and the maximum crustal thickness in the Makran region reaches 46 to 48 km below the Taftan-Bazman volcanos. The Moho map clearly depicts the western edge of the Makran subduction zone, where the Minab fault (representing the eastern edge of the Hormuz Straits) marks the boundary between the thick continental crust of the Arabian plate and the thin oceanic crust of the Oman Sea. Our results show clearly that the high-velocity slab of the Arabian plate subducts northwards beneath the low-velocity overriding lithosphere of Lut block in the western Makran and Helmand block in the eastern Makran.

کلیدواژه‌ها [English]

  • Makran
  • Moho Depth
  • Gravity
  • Shear wave velocity
  • Simulated Annealing Algorithm
Abdetedal, M., Shomali, Z. H. and Gheitanchi, M. R., 2015, Ambient noise surface wave tomography of the Makran subduction zone, south-east Iran: Implications for crustal and uppermost mantle structures: Earthquake Science, 28(4), 235–251.

Aki, K., and Richards, P. G., 1980, Quantitative Seismology: Theory and Methods, W. H. Freeman, San Francisco, Calif.

Al-Damegh, K., Sandvol, E., Al-Lazki, A., and Barazangi, M., 2004, Regional seismic wave propagation (Lg and Sn) and Pn attenuation in the Arabian Plate and surrounding regions: Geophysical Journal International, 157, 775-795.

Bache, T. C., Rodi, W. L., and Harkrider, D. G., 1978, Crustal structures inferred from Rayleigh-wave signatures of NTS explosions: Bulletin of the Seismological Society of America, 68(5), 1399–1413.

Berberian, M., and King, G. C. P., 1981, Towards a paleogeography and tectonic evolution of Iran: Canadian Journal of Earth Sciences, 18, 210–265.

Bird, P., 1978, Finite element modeling of lithosphere deformation: The Zagros collision orogeny: Tectonophysics, 50, 307–336.

Brune, J., and Dorman, J., 1963, Seismic waves and earth structure in the Canadian Shield: Bulletin of the Seismological Society of America, 53, 167-209.

Bucher, R. L., and Smith, R. B., 1971, Crustal structure of the eastern basin and range province and the northern Colorado Plateau from phase velocities of Rayleigh waves: American Geophysical Union Monograph, 14, 59–70.

Byrne, D. E., Sykes, L. R., and Davis, D. A. N. M., 1992, Great Thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zones: Journal of Geophysical Research, 97, 449–478.

Černý, V., 1985, Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm: Journal of Optimization Theory and Applications, 45(1), 41–51.

Dehghani, G. A., and Makris, J., 1984, The gravity field and crustal structure of Iran: Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen Band, 168(2–3), 215–229.

Entezar-Saadat, V., Motavalli-Anbaran, S. H., and Zeyen, H., 2017, Lithospheric structure of the Eastern Iranian plateau from integrated geophysical modeling: A transect from Makran to the Turan platform: Journal of Asian Earth Sciences, 138, 357–366.

Farhoudi, G., and Karig, D. E., 1977, Makran of Iran and Pakistan as an active arc system: Geology, 5, 664-668.

Gallardo‐Delgado, L. A., Pérez‐Flores, M. A., and Gómez‐Treviño, E., 2003, A versatile algorithm for joint 3D inversion of gravity and magnetic data: Geophysics, 68(3), 949–959.

Hempton, M. M., 1987, Constraints on Arabian plate motion and extensional history of the Red Sea: Tectonics, 6, 697-705.

Jackson, J., and McKenzie, D., 1984, Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan: Geophysical Journal International, 77, 185–264.

Kaviani, A., Paul, A., Bourova, E., Hatzfeld, D., Pedersen, H., and Mokhtari, M., 2007, A strong seismic velocity contrast in the shallow mantle across the Zagros collision zone (Iran): Geophysical Journal International, 171, 399–410.

Kirkpatrick, S., Gelatt Jr., C. D., Vecchi, M. P., 1983, Optimization by Simulated Annealing: Science, 220(4598), 671-680.

Knopoff, L., Mueller, S., and Pilant, W. L., 1966, Structure of the crust and upper mantle in the Alps from the phase velocity of Rayleigh waves: Bulletin of the Seismological Society of America, 56, 1009-1044.

Kopp, C., Fruehn, J., Flueh, E. R., Reichert, C., Kukowski, N., Bialas, J., and Klaeschen, D., 2000, Structure of the Makran subduction zone from wide-angle and reflection seismic data: Tectonophysics, 329(1), 171-191.

McEvilly, T. V., 1964, Central U.S. crust-upper mantle structure from love and Rayleigh wave phase velocity inversion: Bulletin of the Seismological Society of America, 54, 1997-2015.

McKenzie, D., 1972, Active tectonics of the Mediterranean region: Geophysical Journal of the Royal Astronomical Society, 30, 109-185.

McKenzie, D., 1978, Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions: Geophysical Journal of the Royal Astronomical Society, 55, 217-254.

Moazami-Goudarzi, K., 1974, La vitesse de phase des ondes de Rayleigh et les structures de la croute et dumanteau superieur entre Machhad et Chiraz (Iran): Pure and Applied Geophysics, 112, 675-681.Motaghi, K., Tatar, M., Shomali, H., Kaviani, A., Priestley, K., 2012, High resolution image of upper mantle beneath NE Iran continental collision zone: Physics of the Earth and Planetary Interiors, 208–209, 38–49.

Motavalli-Anbaran, S. H., Zeyen, H., and Ebrahimzadeh Ardestani, V., 2013, 3D joint inversion modeling of the lithospheric density structure based on gravity, geoid and topography data- Application to the Alborz Mountains (Iran) and South Caspian Basin region: Tectonophysics, 586, 192–205.

Niazi, M., Shimamura, H., and Matsu’ura, M., 1980, Microearthquakes and crustal structure off the Makran coast of Iran: Geophysical Research Letters, 7(5), 297-300.

Laske, G., Masters, G., 2013. Update on CRUST1.0- a 1-degree global model of Earth's crust. In: EGU General Assembly. 2013. 15. pp. 2658.

Press, F., 1956, Determination of crustal structure from phase velocity of Rayleigh waves, I: Southern California: Bulletin of the Geological Society of America, 67, 1647–1658.

Press, F., 1957, Determination of crustal structure from phase velocity of Rayleigh waves, II: San Francisco Bay region: Bulletin of the Seismological Society of America, 47, 87-88.

Rahimi, H., Hamzehloo, H., Vaccari, F., Panza, G. F., 2014, Shear-wave velocity tomography of the lithosphere–asthenosphere system beneath the Iranian Plateau: Bulletin of the Seismological Society of America, 104(6), 2782-2798.

Shad Manaman, N., and Shomali, H., 2010, Upper mantle S-velocity structure and Moho depth variations across Zagros belt, Arabian-Eurasian plate boundary: Physics of the Earth and planetary Interiors, 180, 92–103.

Shad Manaman, N., Shomali, H., and Koyi, H., 2011, New constraints on upper-mantle S-velocity structure and crustal thickness of the Iranian plateau using partitioned waveform inversion: Geophysical Journal International, 184(1), 247–267.

Sengor, A. and Kidd, W., 1979, Post-collisional tectonics of the Turkish-Iranian Plateau and a comparison with Tibet: Tectonics, 55, 361-376.

Takeuchi, H., and Saito, M., 1972, Seismic surface waves, in Methods of Computational Physics, edited by B. A. Bolt, 217–295, Academic, New York.

Tanimoto, T., 1991, Waveform inversion for three-dimensional density and S wave structure: Journal of Geophysical Research, 96(B5), 8167.

Tubman, K. M., 1981, Crust and upper mantle structure of the Middle East and South Central Asia: Seismic Discrimination Semiannual technical summary report, Lincoln Laboratory, Massachusetts Institute of Technology.

Toksoz, M. N., and Anderson, D. L., 1966, Phase velocities of long-period surface waves and structures of the upper mantle, I. Great-circle Love and Rayleigh wave data: Journal of Geophysical Research, 71, 1649-1658.

White, R. S., and Ross, D. A., 1979, Tectonics of the Western Gulf of Oman: Journal of Geophysical Research, 84(Nb7), 3479–3489.

Zeyen, H., Pous, J., 1993. 3-D joint inversion of magnetic and gravimetric data with a
priori information. Geophysical Journal International. 112, 244–256.