ارزیابی و مقایسه شبیه‌سازی‌های مدل‌های HARMONIE و WRF در مقیاس همرفتی در منطقه غرب ایران

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 گروه فیزیک، دانشگاه رازی، کرمانشاه، ایران

2 گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

3 موسسه هواشناسی و هیدورلوژی سوئد، نورشوپینگ، سوئد

چکیده

استفاده از مدل­های پیش­بینی عددی وضع هوا برای پیش­بینی پدیده­های هواشناسی در مقیاس همرفتی توجه زیادی را به خود جلب کرده است. بدین‌منظور استفاده از مدل­های مختلف پیش­بینی عددی وضع هوا و مقایسه نتایج شبیه­سازی این مدل­ها در درک بهتر مشکلات مرتبط با این مقیاس­ها و شناخت خطاهای سامانمند مدل­ها کمک بسیاری خواهد کرد. در این تحقیق شبیه­سازی­های مختلف با استفاده از دو مدل میان­مقیاس WRF و HARMONIE و با شرایط اولیه و مرزی یکسان (ECMWF ERA-Interim) به مدت 15 روز در ماه دسامبر 2013 انجام شده است. تمامی شبیه­سازی­ها با تفکیک افقی در مقیاس همرفتی 5/2 کیلومتر و آغازگری شده در ساعت­های 00UTC و 12UTC می­باشند. اجرای مدل به مدت 72 ساعت در منطقه­ای با کوهساری پیچیده در نیمه غربی ایران انجام شده است. نتایج نشان داد که دو مدل از عملکرد مشابهی در شبیه­سازی متغیرهای مختلف برخوردار هستند. برای شبیه­سازی بارش تجمعی، نتایج نشانگر عملکرد بهتر مدل WRF نسبت به مدل HARMONIE در دوره زمانی شبیه­سازی است. برای بارش تجمعی 24 ساعته، مدل WRF دارای همبستگی اندکی بیشتر و خطای میانگین مربعات کمتر در همه زمان­های پیش­بینی بین مقادیر مشاهداتی و شبیه­سازی شده است، اما برای اریبی بارش، HARMONIE دارای عملکرد بهتری است. به­واسطه به‌کارگیری داده­های بازتحلیل به‌عنوان شرایط مرزی جانبی، افزایش زمان پیش­بینی اثر قابل توجهی بر امتیازهای ارزیابی بارش نداشت. برای متغیرهای هواشناسی سطح زمین، اختلاف قابل توجهی در ارتباط با اریبی رطوبت نسبی تراز 2 متر برای مدل WRF و HARMONIE وجود داشت (فراتخمین رطوبت برای HARMONIE و فروتخمین برای مدل WRF). برای متغیرهای ترازهای بالا، بیشترین شباهت­ها در اریبی و انحراف معیار خطا مرتبط با نیم­رخ­های قائم دما و بیشترین تفاوت­ها در اریبی رطوبت نسبی در تراز 850 هکتوپاسکال مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Inter-comparison of HARMONIE and WRF model simulations in convective-permitting scale over western area of Iran

نویسندگان [English]

  • Abolfazl Neyestani 1
  • Sarmad Ghader 2
  • Nils Gustafsson 3
  • Alireza Mohebalhojeh 2
1 Physics Department, Razi University, Kermanshah, Iran
2 Institute of Geophysics, University of Tehran, Tehran, Iran
3 Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden
چکیده [English]

Ever increasing attention is being paid to the use of Numerical Weather Prediction (NWP) models in the convection-permitting mode for providing high-resolution forecasts. In such applications, the use of NWP models and comparison among the simulations of models help us to understand the problems associated with these scales and to unravel the systematic errors of the models.
In this study, two weeks of “model simulation experiments” have been conducted with the HARMONIE-AROME and the WRF-ARW meso-scale NWP models at 2.5 km horizontal resolution, in order to partly resolve convective phenomena on the same domain over the mountainous areas of the west of Iran for the period of 1–15 December 2013. All experiments have been conducted by using the ECMWF ERA-Interim reanalyses for the lateral boundary conditions, and for this reason, they are called “model simulation experiments”.
The HARMONIE Verification System has been used for the validation, and operational radiosonde and SYNOP observations from the ECMWF have been used for the verification. The precipitation observations from some climatological stations of Iran have also been used. The model simulations described in this study were run up to +72 h. The motivation for this long simulation time is to investigate any possible systematic model problems that could hide possible impact of data assimilation in the planned data assimilation forecast experiments.
Generally, the WRF and HARMONIE have a comparable performance, both of which have similar results for some variables at all forecast lead times. For 24-hour accumulated precipitation forecasts, the correlation coefficient, the bias and the root mean square error (RMSE) were used to compare the performance of both models over the same area. For the correlation coefficient and the RMSE, the WRF has slightly better verification scores at all lead times.
The results for the temperature at 2 m, wind speed and direction at 10 m, and specific humidity (mixing ratio) at 2 m are verified by using different verification scores. A similar behavior is found for both models in the error standard deviation (STDV) verification score; although some minor differences are observed at some lead times and for some variables. A more significant difference is related to the bias of specific humidity at 2 m for the WRF and HARMONIE as over-estimation of moisture for the HARMONIE and its under-estimation for the WRF.
Considering the upper air profiles of the bias and the STDV of the error, both similarities and differences were shown for the vertical structures of various quantities as obtained by the two model simulations. While the strongest similarity was seen in the bias and the STDV of the temperature error profiles, the relative humidity at 850 hPa exhibited the largest differences in both measures of error. A dry bias, which increased with the forecast time, was noticed for the WRF at low levels (850 hPa) as verified against the radiosonde data as well as the SYNOP data at 2 m level.

کلیدواژه‌ها [English]

  • NWP
  • convective scale
  • HARMONIE
  • WRF
  • Iran

قادر، س.، یازجی، د. و شهبازی، ح.، 1394، پیش­بینی میدان باد و سایر میدان­های هواشناسی در محدوده شهر تهران با استفاده از یک سامانه همادی توسعه داده شده برای مدل WRF جهت استفاده در مدل‌های آلودگی هوا: چهارمین همایش ملی مدیریت آلودگی هوا و صدا، دی 1394، تهران.

قرایلو، م.، بیدختی، ع. و مزرعه فراهانی، م.، 1387، بررسی عددی تحول ابر همرفتی با استفاده از مدل ابر یک‌بعدی کج وابسته به زمان صریح (ETTM): مجله فیزیک زمین و فضا، 35 (3)، 97-116.

Brousseau, P., Berre, L., Bouttier, F., and Desroziers, G., 2011, Background-error covariances for a convective-scale data-assimilation system: AROME–France 3D-Var: Quarterly Journal of the Royal Meteorological Society, 137, 409–422.

Bryan, G. H., and Morrison, H., 2012, Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics: Monthly Weather Review, 140, 202–225.

Bryan, G. H., Wyngaard, J. C., and Fritsch, J. M., 2003, Resolution requirements for the simulation of deep moist convection: Monthly Weather Review, 131, 2394–2416.

Bubnova, R. H., Bénard, G. P., and Geleyn, J. F., 1995, Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin system: Monthly Weather Review, 123, 515–535.

Clark, A. J., Gallus Jr., W. A., Xue, M., and Kong, F., 2009, A comparison of precipitation forecast skill between small near convection-permitting and large convection-parameterizing ensembles: Weather and Forecasting, 24, 1121–1140.

Colle, B. A., and Mass, C. F., 2000, The 5–9 February 1996 flooding event over the Pacific Northwest: Sensitivity studies and evaluation of the MM5 precipitation forecasts: Monthly Weather Review, 128, 593–618.

Coniglio, M. C., Correia Jr., J., Marsh, P. T., and Kong, F., 2013, Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations: Weather and Forecasting, 28, 842–862.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F., 2011, The ERA Interim reanalysis, configuration and performance of the data assimilation system: Quarterly Journal of the Royal Meteorological Society, 137(656), 553-597.

Done, J., Davis, C. A., and Weisman, M. L., 2004, The next generation of NWP, Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model: Atmospheric Science Letters, 5, 110–117.

Hanna, S. R., and Yang, R., 2001, Evaluations of mesoscale models’ simulations of near-surface winds, temperature gradients, and mixing depths: Journal of Applied Meteorology and Climatology, 40, 1095–1104.

Houtekamer, P. L., and Zhang, F., 2016, Review of the ensemble Kalman filter for atmospheric data assimilation:Monthly Weather Review, 144, 4489-4532.

Johnson, A., Wang, X., Kong, F., and Xue, M., 2013, Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts: Monthly Weather Review, 141, 3413–3425.

Kain, J. S., Weiss, S. J., Bright, D. R., Baldwin, M. E., Levit, J. J., Carbin, G. W., Schwartz, C. S., Weisman, M. L., Droegemeier, K. K., Weber, D. B., and Thomas, K. W., 2008, Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP: Weather and Forecasting, 23, 931–952.

Kain, J. S., Xue, M., Coniglio, M. C., Weiss, S. J., Kong, F., Jensen, T. L., Brown, B. G., Gao, J., Brewster, K., Thomas, K. W., Wang, Y., Schwartz, C. S., and Levit, J. J., 2010, Assessing advances in the assimilation of radar data and other mesoscale observations within a collaborative forecasting–research environment: Weather and Forecasting, 25, 1510–1521.

Kain, J. S., Weiss, S. J., Levit, J. J., Baldwin, M. E., and Bright, D. R., 2006, Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004: Weather and Forecasting, 21, 167–181.

Kumar Das, A., Bhowmick, M., Kundu, P. K., and Bhowmick, S. K. R., 2014, Verification of WRF rainfall forecasts over India during monsoon 2010: CRA method: Geofizika, 31, 105-126.

Lean, H. W., Clark, P. A., Dixon, M., Roberts, N. M., Fitch, A., Forbes, R., and Halliwell, C., 2008, Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom: Monthly Weather Review, 136, 3408–3424.

Mass, C. F., Owens, D., Westrick, and Colle, B. A., 2002, Does increasing horizontal resolution produce more skillful forecasts?: Bulletin of the American Meteorological Society, 83, 407–430.

Michalakes, J., Chen, S., Dudhia, J., Hart, L., Klemp, J., Middlecoff, J. and Skamarock, W., 2001, Development of a next generation regional weather research and forecast model: Development in Teracomputing: Proceedings of the Ninth ECMWF Workshop on the Use of High Performance.