بررسی اثر داده‌گواری داده‌های ماهواره، prepbufr و GPSro در پیش‌بینی باد و بار گرد و خاک در دو مورد گرد و خاک در مدل WRF-Chem

نوع مقاله: مقاله تحقیقی‌ (پژوهشی‌)

نویسندگان

1 پژوهشکده هواشناسی، تهران، ایران

2 گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

چکیده

در این مطالعه اثر گوارد داده­های تابندگی ماهواره، داده­های prepbufr که شامل مجموعه‌ای از داده­های سطح زمین و جو بالاست و داده­های GPSro با استفاده از سامانه داده­گواری WRFDA در بهبود پیش­بینی باد و بار گرد و خاک در مدل WRF-Chem بررسی شده است. مطالعات انجام شده روی دو مورد گرد و خاک در غرب کشور در تاریخ‌های 15 ژوئن 2016 و 31 اوت 2015 با منشأ کشور عراق بوده است. برای هر مورد، دو آزمایش مختلف، یک آزمایش داده­گواری به روش وردشی سه‌بعدی و با استفاده از خطای زمینه محاسبه شده برای حوزه اجرای مدل و یک آزمایش کنترلی بدون داده­گواری انجام شده است. مقایسه نقشه­های ماهواره با پیش­بینی بار گرد و خاک مدل نشان می­دهد که با انجام داده­گواری مدل محل گسیل و مسیر ترابرد گرد و خاک در ساعت­های اولیه پیش­بینی (24 ساعت اول) را با دقت بیشتری پیش­بینی می­کند؛ اما در ادامه و با زیاد شدن سن پیش­بینی برونداد دو آزمایش بدون داده­گواری و با داده­گواری بسیار شبیه هم می­شوند. در ارزیابی کمی خطای سرعت باد ملاحظه­ می­شود که میانگین قدر مطلق خطا به‌طور سازگار در ترازهای 850 و 700 هکتوپاسکال و 10 متری سطح زمین با انجام داده­گواری تا حدود 11 درصد کاهش می­یابد. به­تدریج و با زیاد شدن سن پیش­بینی تأثیر مثبت داده­گواری کاهش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Impact of assimilation of satellite, prepbufr and GPSro data on wind speed and dust concentration forecasts in WRF-Chem model

نویسندگان [English]

  • Zeinab Zakeri 1
  • majid azadi 1
  • Sarmad Ghader 2
1 Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran
2 space physics, Institute of Geophysics, University of Tehran, Tehran, Iran
چکیده [English]

Dust storms are significant phenomenon in south west Asian countries like Iraq, Syria and Iran. Mineral dust is generated by wind erosion over arid and semiarid land surfaces and is transported locally and over vast distances, causing adverse environmental and weather problems. Recent draughts over dust sources in Iraq and Syria have remarkably increased dust events in the area particularly over west of Iran. Real time prediction of dust storms especially quantitative forecasting of dust concentration has become highly desirable to alleviate its damaging consequences. In this study the impact of the assimilation of satellite radiance, prepbufr and GPSro data in the wind speed and dust load forecasts of WRF-Chem model using WRFDA system are investigated. Prepbufr data are a collection of surface and upper air observations and GPSro data are GPS radio occultation data. These data are operationally collected by the National Centers for Environmental Prediction (NCEP). Data assimilation is applied to two dust events starting from Iraq and Syria borders on August 31st 2015 and June 15th 2016. For each case, two experiments are conducted. An experiment assimilating above mentioned data with three dimensional variational (3D-Var) intermittent assimilation method and a control simulation with no assimilation. The assimilation cycles in the intermittent method consist of three subsequent analyses at 00, 06 and 12 UTC. After the last assimilation cycle, the model is integrated for 48 hours in the future. In variational data assimilation a key element to get a qualified analysis is the accurate specification of error statistics for the background forecast. For the calculation of background error, the model with the same specification for the experiments is run for the whole January 2014 at 0000 and 1200 UTC and the 12- and 24-h forecasts are used to calculate the background error using the National Meteorological Center (NMC) method with CV5 option. The horizontal resolution of the domain is 21 km with 142×130 grid points covering Iran and western neighboring countries. The model has 41 vertical levels with the model top at 25 hPa. Initial and boundary conditions are taken from NCEP Global Forecast System (GFS) model with the horizontal resolution of 0.5º×0.5º.
Results show that the agreement between spatial distribution of dust load prediction of the model and Meteosat-10 satellite RGB images is improvedusing data assimilation especially in first forecast hours. Quantitative comparison of 10 m, 850 hPa and 700 hPa model wind speed with surface observation data and ERA-Interim ECMWF reanalysis data show up to 11% improvement in RMSE especially in first forecast hour times. The positive impact of data assimilation is decreased as the forecast length increases.

کلیدواژه‌ها [English]

  • Data assimilation
  • WRFDA
  • satellite radiance data
  • dust forecast
  • WRF-Chem

رضازاده، م.، ایران‌نژاد، پ.، و شائو، ی.، 1392، شبیه‌سازی گسیل غبار با مدل پیش­بینی عددی وضع هوا WRF-Chem و با استفاده از داده‌های جدید سطح در منطقه خاورمیانه: مجله فیزیک زمین و فضا، 39(1)، 191-212.

ذاکری، ز.، آزادی، م.، و قادر، س.، 1394، بررسی اثر داده‌گواری داده‌های ماهواره و ایستگاه‌های دیدبانی بر روی پیش‌بینی مدل WRF: نشریه پژوهش‌های اقلیم شناسی، 21(2)، 31-42.

ذاکری، ز.، آزادی، م.، و قادر، س.، 1395، استفاده از آزمایش دیدبانی تک‌نقطه‌ای برای مقایسه دو ماتریس هم‌وردای خطای زمینه مختلف در سامانه داده‌گواری ‏WRFDA‏: هفدهمین کنفرانس ژئوفیزیک ایران، تهران، اردیبهشت 1395، 21.

نیستانی، ا.، قادر، س.، و محب­الحجه، ع.، 1396، کاربست داده­گواری در مدل WRF برای شبیه‌سازی بارش ناشی از یک سامانه همدیدی در غرب ایران: مجله ژئوفیزیک ایران، 11(1)، 101-123.

Ashrafi, K., Shafiepour-Motlagh, M., Aslemand, A., and Ghader, S., 2014, Dust storm simulation over Iran using HYSPLIT: Journal of Environmental Health Science and Engineering, 12(9), doi:10.1186/2052-336X-12-9.

Barker, D. M., Huang, W., Guo, Y. R., Bourgeois, A. J., and Xiao, Q. N., 2004, A Three-Dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results: Monthly Weather Review, 132, 897–914.

Chen, F., and Dudhia, J., 2001, Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System, Part I: Model Implementation and Sensitivity: Monthly Weather Review, 129, 569–585.

Cheng, W. Y. Y., and Steenburgh, W. J., 2005, Evaluation of Surface Sensible Weather Forecasts by the WRF and the Eta Models over the Western United States: Weather Forecast, 20, 812–821, doi: 10.1175/WAF885.1.

Chin, M., Rood, R. B., Lin, S. J., Müller, J. F., and Thompson, A. M., 2000, Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties: Journal of Geophysical Research, 105, 24671–24687, doi: 10.1029/2000JD900384.

Dee, D. P., 2005, Bias and data assimilation: Quarterly Journal of the Royal Meteorological Society, 131, 3323–3343, doi:10.1256/qj.05.137.

Dudhia, J., 1988, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model: Journal of Atmospheric Science, 46, 3077–3107.

Fan, X., and Tilley, J. S., 2005, Dynamic Assimilation of MODIS-Retrieved Humidity Profiles within a Regional Model for High-Latitude Forecast Applications: Monthly Weather Review, 133, 3450–3480, doi:10.1175/MWR3044.1.

Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S. J., 2001. Sources and distributions of dust aerosols simulated with the GOCART model: Journal of Geophysical Research, 106, 20255–20273, doi: 10.1029/2000JD000053.

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B., 2005, Fully coupled “online” chemistry within the WRF model: Atmospheric Environment, 39, 6957–6975, doi:10.1016/j.atmosenv.2005.04.027.

Hong, S. Y., Dudhia, J., and Chen, S. H., 2004, A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation: Monthly Weather Review, 132, 103–120.

Hong, S. Y., Noh, Y., and Dudhia, J., 2006, A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes: Monthly Weather Review, 134, 2318–2341, doi:10.1175/MWR3199.1.

Huang, X. Y., Xiao, Q., Barker, D. M., Zhang, X., Michalakes, J., Huang, W., Henderson, T., Bray, J., Chen, Y., Ma, Z., Dudhia, J., Guo, Y., Zhang, X., Won, D. J., Lin, H. C., and Kuo, Y. H., 2009, Four-Dimensional Variational Data Assimilation for WRF: Formulation and Preliminary Results: Monthly Weather Review, 137, 299–314, doi:10.1175/2008MWR2577.1.

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D., 2008, Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models: Journal of Geophysical Research, 113, D13103, doi:10.1029/2008JD009944

Jaffe, D., Snow, J., and Cooper, O., 2003, The 2001 Asian dust events: Transport and impact on surface aerosol concentrations in the U.S.: Air and Space News, 84, 501–507, doi:10.1029/2003EO460001.

Kain, J. S., 2004, The Kain–Fritsch Convective Parameterization: An Update: Journal of Applied Meteorology, 43, 170–181.

Kazumori, M., 2013, Satellite Radiance Assimilation in the JMA Operational Mesoscale 4DVAR System: Monthly Weather Review, 142, 1361–1381, doi:10.1175/MWR-D-13-00135.1.

Kim, H. M., Kay, J. K., Yang, E.- G., Kim, S., and Lee, M., 2013, Statistical adjoint sensitivity distributions of meteorological forecast errors of Asian dust transport events in Korea: Tellus B, 65(1).

Lin, C. Y., Wang, Z. F., and Zhu, J., 2008a, An Ensemble Kalman Filter for severe dust storm data assimilation over China: Atmospheric Chemistry and Physics, 8, 2975-2983.

Lin, C. Y., Zhu, J., and Wang, Z. F., 2008b, Model bias correction for dust storm forecast using ensemble Kalman Filter: Journal of Geophysical Research, 113(D14306), doi: 10.1029/2007JD009498.

Liu, F., Krieger, J. R., and Zhang, J., 2013, Toward Producing the Chukchi–Beaufort High-Resolution Atmospheric Reanalysis (CBHAR) via the WRFDA Data Assimilation System: Monthly Weather Review, 142(2), 788–805

Liu, Q., and Weng, F., 2006, Advanced doubling-adding method for radiative transfer in planetary atmospheres: Journal of the Atmospheric Sciences, 63, 3459–3465

Liu, Z., Liu, Q., Lin, H. C., Schwartz, C. S., Lee, Y. H., and Wang, T., 2011, Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia: Journal of Geophysics Research Atmospheres, 116, D23206, doi:10.1029/2011JD016159

Marticorena, B., and Bergametti, G., 1995, Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme: Journal of Geophysical Research, 100, 16415–16430, doi:10.1029/95JD00690.

Marticorena, B., Bergametti, G., Aumont, B., Callot, Y., N’Doumé, C., and Legrand, M., 1997, Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources: Journal of Geophysical Research, 102, 4387–4404, doi:10.1029/96JD02964

Monin, A. S. and Obukhov, A. M., 1954, Basic laws of turbulent mixing in the surface layer of the atmosphere: Contributions of the Geophysical Institute of the Slovak Academy of Sciences, 151(24), 163–187.

Niu, T., Gong, S. L., Zhu, G. F., Liu, H. L., Hu, X. Q., Zhou, C. H., Wang, Y. Q., and Zhang, X. Y., 2008, Data assimilation of dust aerosol observations for CUACE/Dust forecasting system: Atmospheric Chemistry and Physics, 8, 3473-3482.

Parrish, D. F. and Derber, J. C., 1992, The National Meteorological Center’s Spectral Statistical-Interpolation Analysis System: Monthly Weather Review, 120, 1747–1763.

Routray, A., Kar, S. C., Mali, P., and Sowjanya, K., 2014, Simulation of monsoon depressions using WRF-VAR: impact of different background error statistics and lateral boundary conditions: Monthly Weather Review, 142, 3586–3613, doi:10.1175/MWR-D-13-00285.1.

Sharifi, M. A., Azadi, M., and Khaniani, A. S., 2016, Numerical simulation of rainfall with assimilation of conventional and GPS observations over north of Iran: Annals of Geophysics, 59, P0322, doi:10.4401/ag-6919.

Schwartz, C. S., Liu, Z., Lin, H. C., and McKeen, S. A., 2012, Simultaneous three-dimensional variational assimilation of surface fine particulate matter and MODIS aerosol optical depth: Journal of Geophysics Research Atmospheres, 117, D13202. doi:10.1029/2011JD017383

Vedel, H., and Huang, X. Y., 2004, Impact of Ground Based GPS Data on Numerical Weather Prediction: Journal of Meteorological Society of Japan, Ser II, 82, 459–472, doi:10.2151/jmsj.2004.459.

Wang, Z., Ueda, H., and Huang, M., 2000, A deflation module for use in modeling long-range transport of yellow sand over East Asia: Journal of Geophysical Research Atmospheres, 105, 26947–26959, doi:10.1029/2000JD900370.

Warner, T. T., 2010, Numerical Weather and Climate Prediction: Cambridge University Press.

Xu, J., Rugg, S., Byerle, L., and Liu, Z., 2009, Weather forecasts by the WRF-ARW model with the GSI data assimilation system in the complex terrain areas of southwest Asia: Weather and Forecasting, 24, 987–1008. doi:10.1175/2009WAF2222229.1

Yumimoto, K., Uno, I., Sugimoto, N., Shimizu, A., Liu, Z., and Winker, D. M., 2007, Numerical modeling of Asian dust emission and transport with adjoint inversion using LIDAR network observations: Atmospheric Chemistry and Physics Discussions, 7, 15955-15987.

Zakeri, Z., Azadi, M., and Ghader, S., 2018, The impact of different background errors in the assimilation of satellite radiances and in-situ observational data using WRFDA for three rainfall events over Iran: Advances in Space Research, 61(1), 433-447.

Zoljoodi, M., Didevarasl, A., and Saadatabadi, A. R., 2013, Dust Events in the Western Parts of Iran and the Relationship with Drought Expansion over the Dust-Source Areas in Iraq and Syria: Atmospheric and Climate Sciences, 3, 321-336, doi: 10.4236/acs.2013.33034.